These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Resonance tongues in a system of globally coupled FitzHugh-Nagumo oscillators with time-periodic coupling strength. Bîrzu A; Krischer K Chaos; 2010 Dec; 20(4):043114. PubMed ID: 21198084 [TBL] [Abstract][Full Text] [Related]
3. Amplitude and phase effects on the synchronization of delay-coupled oscillators. D'Huys O; Vicente R; Danckaert J; Fischer I Chaos; 2010 Dec; 20(4):043127. PubMed ID: 21198097 [TBL] [Abstract][Full Text] [Related]
4. Delayed feedback control of synchronization in weakly coupled oscillator networks. Novičenko V Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022919. PubMed ID: 26382488 [TBL] [Abstract][Full Text] [Related]
5. Bipartite networks of oscillators with distributed delays: Synchronization branches and multistability. Punetha N; Ramaswamy R; Atay FM Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042906. PubMed ID: 25974561 [TBL] [Abstract][Full Text] [Related]
6. Universal occurrence of the phase-flip bifurcation in time-delay coupled systems. Prasad A; Dana SK; Karnatak R; Kurths J; Blasius B; Ramaswamy R Chaos; 2008 Jun; 18(2):023111. PubMed ID: 18601478 [TBL] [Abstract][Full Text] [Related]
7. Phase and amplitude dynamics in large systems of coupled oscillators: growth heterogeneity, nonlinear frequency shifts, and cluster states. Lee WS; Ott E; Antonsen TM Chaos; 2013 Sep; 23(3):033116. PubMed ID: 24089952 [TBL] [Abstract][Full Text] [Related]
8. Amplitude and phase dynamics in oscillators with distributed-delay coupling. Kyrychko YN; Blyuss KB; Schöll E Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120466. PubMed ID: 23960224 [TBL] [Abstract][Full Text] [Related]
9. Oscillation death in diffusively coupled oscillators by local repulsive link. Hens CR; Olusola OI; Pal P; Dana SK Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):034902. PubMed ID: 24125390 [TBL] [Abstract][Full Text] [Related]
10. Transition from amplitude to oscillation death in a network of oscillators. Nandan M; Hens CR; Pal P; Dana SK Chaos; 2014 Dec; 24(4):043103. PubMed ID: 25554023 [TBL] [Abstract][Full Text] [Related]
11. Unstable delayed feedback control to change sign of coupling strength for weakly coupled limit cycle oscillators. Novičenko V; Ratas I Chaos; 2021 Sep; 31(9):093138. PubMed ID: 34598474 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling. Burić N; Todorović D Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066222. PubMed ID: 16241341 [TBL] [Abstract][Full Text] [Related]
13. Phase-flip transition in relay-coupled nonlinear oscillators. Sharma A; Shrimali MD; Prasad A; Ramaswamy R; Feudel U Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016226. PubMed ID: 21867292 [TBL] [Abstract][Full Text] [Related]
14. Synchronization and beam forming in an array of repulsively coupled oscillators. Rulkov NF; Tsimring L; Larsen ML; Gabbay M Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 2):056205. PubMed ID: 17279982 [TBL] [Abstract][Full Text] [Related]
15. Amplitude death with mean-field diffusion. Sharma A; Shrimali MD Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):057204. PubMed ID: 23004911 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of globally delay-coupled neurons displaying subthreshold oscillations. Masoller C; Torrent MC; García-Ojalvo J Philos Trans A Math Phys Eng Sci; 2009 Aug; 367(1901):3255-66. PubMed ID: 19620122 [TBL] [Abstract][Full Text] [Related]
17. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Selivanov AA; Lehnert J; Dahms T; Hövel P; Fradkov AL; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016201. PubMed ID: 22400637 [TBL] [Abstract][Full Text] [Related]
18. Inphase and antiphase synchronization in a delay-coupled system with applications to a delay-coupled FitzHugh-Nagumo system. Song Y; Xu J IEEE Trans Neural Netw Learn Syst; 2012 Oct; 23(10):1659-70. PubMed ID: 24808010 [TBL] [Abstract][Full Text] [Related]
19. Amplitude death in oscillator networks with variable-delay coupling. Gjurchinovski A; Zakharova A; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032915. PubMed ID: 24730921 [TBL] [Abstract][Full Text] [Related]
20. Synchronization of networks of oscillators with distributed delay coupling. Kyrychko YN; Blyuss KB; Schöll E Chaos; 2014 Dec; 24(4):043117. PubMed ID: 25554037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]