These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 25554037)
1. Synchronization of networks of oscillators with distributed delay coupling. Kyrychko YN; Blyuss KB; Schöll E Chaos; 2014 Dec; 24(4):043117. PubMed ID: 25554037 [TBL] [Abstract][Full Text] [Related]
2. Controlling synchrony by delay coupling in networks: from in-phase to splay and cluster states. Choe CU; Dahms T; Hövel P; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):025205. PubMed ID: 20365621 [TBL] [Abstract][Full Text] [Related]
3. Adaptive synchronization in delay-coupled networks of Stuart-Landau oscillators. Selivanov AA; Lehnert J; Dahms T; Hövel P; Fradkov AL; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016201. PubMed ID: 22400637 [TBL] [Abstract][Full Text] [Related]
4. Bipartite networks of oscillators with distributed delays: Synchronization branches and multistability. Punetha N; Ramaswamy R; Atay FM Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042906. PubMed ID: 25974561 [TBL] [Abstract][Full Text] [Related]
5. Synchronization in networks with heterogeneous coupling delays. Otto A; Radons G; Bachrathy D; Orosz G Phys Rev E; 2018 Jan; 97(1-1):012311. PubMed ID: 29448336 [TBL] [Abstract][Full Text] [Related]
6. Fading of remote synchronization in tree networks of Stuart-Landau oscillators. Karakaya B; Minati L; Gambuzza LV; Frasca M Phys Rev E; 2019 May; 99(5-1):052301. PubMed ID: 31212500 [TBL] [Abstract][Full Text] [Related]
7. Bifurcation behaviors of synchronized regions in logistic map networks with coupling delay. Tang L; Wu X; Lü J; Lu JA Chaos; 2015 Mar; 25(3):033101. PubMed ID: 25833423 [TBL] [Abstract][Full Text] [Related]
8. Synchronization-desynchronization transitions in complex networks: an interplay of distributed time delay and inhibitory nodes. Wille C; Lehnert J; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032908. PubMed ID: 25314505 [TBL] [Abstract][Full Text] [Related]
9. Amplitude and phase effects on the synchronization of delay-coupled oscillators. D'Huys O; Vicente R; Danckaert J; Fischer I Chaos; 2010 Dec; 20(4):043127. PubMed ID: 21198097 [TBL] [Abstract][Full Text] [Related]
11. Chaos synchronization by resonance of multiple delay times. Martin MJ; D'Huys O; Lauerbach L; Korutcheva E; Kinzel W Phys Rev E; 2016 Feb; 93(2):022206. PubMed ID: 26986330 [TBL] [Abstract][Full Text] [Related]
12. Synchronization of delay-coupled nonlinear oscillators: an approach based on the stability analysis of synchronized equilibria. Michiels W; Nijmeijer H Chaos; 2009 Sep; 19(3):033110. PubMed ID: 19791990 [TBL] [Abstract][Full Text] [Related]
13. Amplitude death in oscillator networks with variable-delay coupling. Gjurchinovski A; Zakharova A; Schöll E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032915. PubMed ID: 24730921 [TBL] [Abstract][Full Text] [Related]
14. Amplitude and phase dynamics in oscillators with distributed-delay coupling. Kyrychko YN; Blyuss KB; Schöll E Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120466. PubMed ID: 23960224 [TBL] [Abstract][Full Text] [Related]
15. Synchronization states and multistability in a ring of periodic oscillators: experimentally variable coupling delays. Williams CR; Sorrentino F; Murphy TE; Roy R Chaos; 2013 Dec; 23(4):043117. PubMed ID: 24387556 [TBL] [Abstract][Full Text] [Related]
16. Delayed feedback control of synchronization in weakly coupled oscillator networks. Novičenko V Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022919. PubMed ID: 26382488 [TBL] [Abstract][Full Text] [Related]
17. Stable amplitude chimera states in a network of locally coupled Stuart-Landau oscillators. Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M Chaos; 2018 Mar; 28(3):033110. PubMed ID: 29604660 [TBL] [Abstract][Full Text] [Related]
18. Delay-induced remote synchronization in bipartite networks of phase oscillators. Punetha N; Ujjwal SR; Atay FM; Ramaswamy R Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022922. PubMed ID: 25768584 [TBL] [Abstract][Full Text] [Related]
19. Synchronization transition of heterogeneously coupled oscillators on scale-free networks. Oh E; Lee DS; Kahng B; Kim D Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011104. PubMed ID: 17358107 [TBL] [Abstract][Full Text] [Related]