These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25554045)

  • 21. Impact of symmetry breaking in networks of globally coupled oscillators.
    Premalatha K; Chandrasekar VK; Senthilvelan M; Lakshmanan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052915. PubMed ID: 26066237
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amplitude suppression of oscillators with delay connections and slow switching topology.
    Iwamoto T; Sugitani Y; Masamura S; Konishi K; Hara N
    Phys Rev E; 2020 Sep; 102(3-1):032206. PubMed ID: 33076019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amplitude death of identical oscillators in networks with direct coupling.
    Illing L
    Phys Rev E; 2016 Aug; 94(2-1):022215. PubMed ID: 27627306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phase-locked regimes in delay-coupled oscillator networks.
    Punetha N; Prasad A; Ramaswamy R
    Chaos; 2014 Dec; 24(4):043111. PubMed ID: 25554031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spontaneous synchronization of coupled oscillator systems with frequency adaptation.
    Taylor D; Ott E; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046214. PubMed ID: 20481814
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predictions of ultraharmonic oscillations in coupled arrays of limit cycle oscillators.
    Landsman AS; Schwartz IB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036204. PubMed ID: 17025726
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synchronization of phase oscillators with frequency-weighted coupling.
    Xu C; Sun Y; Gao J; Qiu T; Zheng Z; Guan S
    Sci Rep; 2016 Feb; 6():21926. PubMed ID: 26903110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control of amplitude chimeras by time delay in oscillator networks.
    Gjurchinovski A; Schöll E; Zakharova A
    Phys Rev E; 2017 Apr; 95(4-1):042218. PubMed ID: 28505829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Local synchronization in complex networks of coupled oscillators.
    Stout J; Whiteway M; Ott E; Girvan M; Antonsen TM
    Chaos; 2011 Jun; 21(2):025109. PubMed ID: 21721787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Explosive death in nonlinear oscillators coupled by quorum sensing.
    Verma UK; Chaurasia SS; Sinha S
    Phys Rev E; 2019 Sep; 100(3-1):032203. PubMed ID: 31640010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Symmetry breaking dynamics induced by mean-field density and low-pass filter.
    Ponrasu K; Singh U; Sathiyadevi K; Senthilkumar DV; Chandrasekar VK
    Chaos; 2020 May; 30(5):053120. PubMed ID: 32491874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase and amplitude dynamics in large systems of coupled oscillators: growth heterogeneity, nonlinear frequency shifts, and cluster states.
    Lee WS; Ott E; Antonsen TM
    Chaos; 2013 Sep; 23(3):033116. PubMed ID: 24089952
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amplitude-mediated chimera states in nonlocally coupled Stuart-Landau oscillators.
    Bi H; Fukai T
    Chaos; 2022 Aug; 32(8):083125. PubMed ID: 36049944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Path-dependent dynamics induced by rewiring networks of inertial oscillators.
    Qian W; Papadopoulos L; Lu Z; Kroma-Wiley KA; Pasqualetti F; Bassett DS
    Phys Rev E; 2022 Feb; 105(2-1):024304. PubMed ID: 35291167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental observation of a transition from amplitude to oscillation death in coupled oscillators.
    Banerjee T; Ghosh D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062902. PubMed ID: 25019846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amplitude death with mean-field diffusion.
    Sharma A; Shrimali MD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 2):057204. PubMed ID: 23004911
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Origin of amplitude synchronization in coupled nonidentical oscillators.
    Qiu Q; Zhou B; Wang P; He L; Xiao Y; Yang Z; Zhan M
    Phys Rev E; 2020 Feb; 101(2-1):022210. PubMed ID: 32168617
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synchronization-desynchronization transitions in complex networks: an interplay of distributed time delay and inhibitory nodes.
    Wille C; Lehnert J; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032908. PubMed ID: 25314505
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cluster singularity: The unfolding of clustering behavior in globally coupled Stuart-Landau oscillators.
    Kemeth FP; Haugland SW; Krischer K
    Chaos; 2019 Feb; 29(2):023107. PubMed ID: 30823729
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Restoring oscillatory behavior from amplitude death with anti-phase synchronization patterns in networks of electrochemical oscillations.
    Nagao R; Zou W; Kurths J; Kiss IZ
    Chaos; 2016 Sep; 26(9):094808. PubMed ID: 27781452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.