These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Coarse-grained simulations for flow of complex soft matter fluids in the bulk and in the presence of solid interfaces. Ahuja VR; van der Gucht J; Briels WJ J Chem Phys; 2016 Nov; 145(19):194903. PubMed ID: 27875869 [TBL] [Abstract][Full Text] [Related]
3. Hydrodynamically Coupled Brownian Dynamics: A coarse-grain particle-based Brownian dynamics technique with hydrodynamic interactions for modeling self-developing flow of polymer solutions. Ahuja VR; van der Gucht J; Briels WJ J Chem Phys; 2018 Jan; 148(3):034902. PubMed ID: 29352779 [TBL] [Abstract][Full Text] [Related]
4. Constitutive equations for the flow behavior of entangled polymeric systems: application to star polymers. Briels WJ; Vlassopoulos D; Kang K; Dhont JK J Chem Phys; 2011 Mar; 134(12):124901. PubMed ID: 21456697 [TBL] [Abstract][Full Text] [Related]
5. Molecular transport and flow past hard and soft surfaces: computer simulation of model systems. Léonforte F; Servantie J; Pastorino C; Müller M J Phys Condens Matter; 2011 May; 23(18):184105. PubMed ID: 21508476 [TBL] [Abstract][Full Text] [Related]
9. Reaction Brownian dynamics and the effect of spatial fluctuations on the gain of a push-pull network. Morelli MJ; ten Wolde PR J Chem Phys; 2008 Aug; 129(5):054112. PubMed ID: 18698893 [TBL] [Abstract][Full Text] [Related]
10. Computationally efficient algorithms for incorporation of hydrodynamic and excluded volume interactions in Brownian dynamics simulations: a comparative study of the Krylov subspace and Chebyshev based techniques. Saadat A; Khomami B J Chem Phys; 2014 May; 140(18):184903. PubMed ID: 24832302 [TBL] [Abstract][Full Text] [Related]
11. Fractional Brownian motion and the critical dynamics of zipping polymers. Walter JC; Ferrantini A; Carlon E; Vanderzande C Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031120. PubMed ID: 22587051 [TBL] [Abstract][Full Text] [Related]
12. Effect of angular momentum conservation on hydrodynamic simulations of colloids. Yang M; Theers M; Hu J; Gompper G; Winkler RG; Ripoll M Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013301. PubMed ID: 26274301 [TBL] [Abstract][Full Text] [Related]
14. Cross-streamline migration of a semiflexible polymer in a pressure driven flow. Reddig S; Stark H J Chem Phys; 2011 Oct; 135(16):165101. PubMed ID: 22047266 [TBL] [Abstract][Full Text] [Related]
15. Polymer translocation: the effect of backflow. Ali I; Yeomans JM J Chem Phys; 2005 Dec; 123(23):234903. PubMed ID: 16392945 [TBL] [Abstract][Full Text] [Related]
16. Why are coarse-grained force fields too fast? A look at dynamics of four coarse-grained polymers. Depa P; Chen C; Maranas JK J Chem Phys; 2011 Jan; 134(1):014903. PubMed ID: 21219026 [TBL] [Abstract][Full Text] [Related]
17. Modeling of intramolecular reactions of polymers: an efficient method based on Brownian dynamics simulations. Klenin KV; Langowski J J Chem Phys; 2004 Sep; 121(10):4951-60. PubMed ID: 15332931 [TBL] [Abstract][Full Text] [Related]
18. Stochastic dynamics and denaturation of thermalized DNA. Deng ML; Zhu WQ Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021918. PubMed ID: 18352062 [TBL] [Abstract][Full Text] [Related]
19. Systematic coarse-graining of the dynamics of entangled polymer melts: the road from chemistry to rheology. Padding JT; Briels WJ J Phys Condens Matter; 2011 Jun; 23(23):233101. PubMed ID: 21613700 [TBL] [Abstract][Full Text] [Related]
20. Modeling real dynamics in the coarse-grained representation of condensed phase systems. Izvekov S; Voth GA J Chem Phys; 2006 Oct; 125(15):151101. PubMed ID: 17059230 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]