These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25554168)

  • 1. Single ion dynamics in molten sodium bromide.
    Alcaraz O; Demmel F; Trullas J
    J Chem Phys; 2014 Dec; 141(24):244508. PubMed ID: 25554168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Br diffusion in molten NaBr explored by coherent quasielastic neutron scattering.
    Demmel F; Alcaraz O; Trullas J
    Phys Rev E; 2016 Apr; 93():042604. PubMed ID: 27176349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasielastic neutron scattering measurements and ab initio MD-simulations on single ion motions in molten NaF.
    Demmel F; Mukhopadhyay S
    J Chem Phys; 2016 Jan; 144(1):014503. PubMed ID: 26747811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neutron diffraction data and molecular dynamics simulations of the molten mixture Ag(Br0.7I0.3).
    Bitrián V; Trullàs J; Silbert M; Enosaki T; Kawakita Y; Takeda S
    J Chem Phys; 2006 Nov; 125(18):184510. PubMed ID: 17115768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium ion self-diffusion in molten NaBr probed over different length scales.
    Demmel F
    Phys Rev E; 2020 Jun; 101(6-1):062603. PubMed ID: 32688605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics study of polarizable ion models for molten AgBr.
    Bitrian V; Trullàs J
    J Phys Chem B; 2006 Apr; 110(14):7490-9. PubMed ID: 16599529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulation of imidazolium-based ionic liquids. I. Dynamics and diffusion coefficient.
    Kowsari MH; Alavi S; Ashrafizaadeh M; Najafi B
    J Chem Phys; 2008 Dec; 129(22):224508. PubMed ID: 19071929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of fixed charge and polarizable models for predicting the structural, thermodynamic, and transport properties of molten alkali chlorides.
    Wang H; DeFever RS; Zhang Y; Wu F; Roy S; Bryantsev VS; Margulis CJ; Maginn EJ
    J Chem Phys; 2020 Dec; 153(21):214502. PubMed ID: 33291915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and dynamics in yttrium-based molten rare earth alkali fluorides.
    Levesque M; Sarou-Kanian V; Salanne M; Gobet M; Groult H; Bessada C; Madden PA; Rollet AL
    J Chem Phys; 2013 May; 138(18):184503. PubMed ID: 23676052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First principles molecular dynamics of molten NaCl.
    Galamba N; Costa Cabral BJ
    J Chem Phys; 2007 Mar; 126(12):124502. PubMed ID: 17411139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The structure of molten AgCl, AgI and their eutectic mixture as studied by molecular dynamics simulations of polarizable ion model potentials.
    Alcaraz O; Bitrián V; Trullàs J
    J Chem Phys; 2011 Jan; 134(1):014505. PubMed ID: 21219005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of the structure and transport properties of tetra-butylphosphonium amino acid ionic liquids.
    Kowsari MH; Alavi S; Najafi B; Gholizadeh K; Dehghanpisheh E; Ranjbar F
    Phys Chem Chem Phys; 2011 May; 13(19):8826-37. PubMed ID: 21455505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercooled water in PVA matrixes. II. A molecular dynamics simulation study and comparison with QENS results.
    Chiessi E; Cavalieri F; Paradossi G
    J Phys Chem B; 2005 Apr; 109(16):8091-6. PubMed ID: 16851945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water motion in reverse micelles studied by quasielastic neutron scattering and molecular dynamics simulations.
    Harpham MR; Ladanyi BM; Levinger NE; Herwig KW
    J Chem Phys; 2004 Oct; 121(16):7855-68. PubMed ID: 15485248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulations of the local structures and transport coefficients of molten alkali chlorides.
    Wang J; Sun Z; Lu G; Yu J
    J Phys Chem B; 2014 Aug; 118(34):10196-206. PubMed ID: 25105467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solute size effects on the solvation structure and diffusion of ions in liquid methanol under normal and cold conditions.
    Chowdhuri S; Chandra A
    J Chem Phys; 2006 Feb; 124(8):084507. PubMed ID: 16512729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics study of polarizable point dipole models for molten sodium iodide.
    Alcaraz O; Bitrián V; Trullàs J
    J Chem Phys; 2007 Oct; 127(15):154508. PubMed ID: 17949174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A polarizable ion model for the structure of molten CuI.
    Bitrián V; Alcaraz O; Trullàs J
    J Chem Phys; 2011 Jan; 134(4):044501. PubMed ID: 21280742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theory of transport properties in molten salts.
    Koishi T; Tamaki S
    J Chem Phys; 2005 Nov; 123(19):194501. PubMed ID: 16321094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkali halide solutions under thermal gradients: soret coefficients and heat transfer mechanisms.
    Römer F; Wang Z; Wiegand S; Bresme F
    J Phys Chem B; 2013 Jul; 117(27):8209-22. PubMed ID: 23758489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.