These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 25554185)

  • 1. Viscoelasticity of model interphase chromosomes.
    Valet M; Rosa A
    J Chem Phys; 2014 Dec; 141(24):245101. PubMed ID: 25554185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alignment of particles in sheared viscoelastic fluids.
    Santos de Oliveira IS; van den Noort A; Padding JT; den Otter WK; Briels WJ
    J Chem Phys; 2011 Sep; 135(10):104902. PubMed ID: 21932919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature dependent micro-rheology of a glass-forming polymer melt studied by molecular dynamics simulation.
    Kuhnhold A; Paul W
    J Chem Phys; 2014 Sep; 141(12):124907. PubMed ID: 25273474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosome dynamics, molecular crowding, and diffusion in the interphase cell nucleus: a Monte Carlo lattice simulation study.
    Fritsch CC; Langowski J
    Chromosome Res; 2011 Jan; 19(1):63-81. PubMed ID: 21116704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelasticity of entangled lambda-phage DNA solutions.
    Zhu X; Kundukad B; van der Maarel JR
    J Chem Phys; 2008 Nov; 129(18):185103. PubMed ID: 19045431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mesoscale modeling of shear-thinning polymer solutions.
    Santos de Oliveira IS; Fitzgerald BW; den Otter WK; Briels WJ
    J Chem Phys; 2014 Mar; 140(10):104903. PubMed ID: 24628201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of viscoelastic properties by analysis of probe-particle motion in molecular simulations.
    Karim M; Kohale SC; Indei T; Schieber JD; Khare R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051501. PubMed ID: 23214783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of elastic properties for polymer-particle nanocomposites exhibiting an interphase.
    Deng F; Van Vliet KJ
    Nanotechnology; 2011 Apr; 22(16):165703. PubMed ID: 21393814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061402. PubMed ID: 20365170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamically consistent fluid particle model for viscoelastic flows.
    Ellero M; Español P; Flekkøy EG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 1):041504. PubMed ID: 14682944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of different three-dimensional polymer models of interphase chromosomes compared to experiments-an evaluation and review framework of the 3D genome organization.
    Knoch TA
    Semin Cell Dev Biol; 2019 Jun; 90():19-42. PubMed ID: 30125668
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competing effects of particle and medium inertia on particle diffusion in viscoelastic materials, and their ramifications for passive microrheology.
    Indei T; Schieber JD; Córdoba A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041504. PubMed ID: 22680480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of a semiflexible polymer or polymer ring in shear flow.
    Lang PS; Obermayer B; Frey E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022606. PubMed ID: 25353501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of Different Three-Dimensional Models of Whole Interphase Nuclei Compared to Experiments - A Consistent Scale-Bridging Simulation Framework for Genome Organization.
    Knoch TA
    Results Probl Cell Differ; 2022; 70():495-549. PubMed ID: 36348120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrinsic viscoelasticity in thin high-molecular-weight polymer films.
    Sheng X; Wintzenrieth F; Thomas KR; Steiner U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062604. PubMed ID: 25019807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brownian particles in supramolecular polymer solutions.
    van der Gucht J; Besseling NA; Knoben W; Bouteiller L; Cohen Stuart MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051106. PubMed ID: 12786133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes.
    Benedetti F; Dorier J; Burnier Y; Stasiak A
    Nucleic Acids Res; 2014 Mar; 42(5):2848-55. PubMed ID: 24366878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Passive one-particle microrheology of an unentangled polymer melt studied by molecular dynamics simulation.
    Kuhnhold A; Paul W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022602. PubMed ID: 25215751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the static and dynamic properties of a semiflexible polymer using lattice Boltzmann and Brownian-dynamics simulations.
    Ladd AJ; Kekre R; Butler JE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036704. PubMed ID: 19905243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treating inertia in passive microbead rheology.
    Indei T; Schieber JD; Córdoba A; Pilyugina E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021504. PubMed ID: 22463216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.