These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 25554739)

  • 1. Ion channels and drug transporters as targets for anthelmintics.
    Greenberg RM
    Curr Clin Microbiol Rep; 2014 Dec; 1(3-4):51-60. PubMed ID: 25554739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylcholinesterase and Nicotinic Acetylcholine Receptors in Schistosomes and Other Parasitic Helminths.
    You H; Liu C; Du X; McManus DP
    Molecules; 2017 Sep; 22(9):. PubMed ID: 28906438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. P-glycoproteins and other multidrug resistance transporters in the pharmacology of anthelmintics: Prospects for reversing transport-dependent anthelmintic resistance.
    Lespine A; Ménez C; Bourguinat C; Prichard RK
    Int J Parasitol Drugs Drug Resist; 2012 Dec; 2():58-75. PubMed ID: 24533264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The antitrypanosomal diarylamidines, diminazene and pentamidine, show anthelmintic activity against Haemonchus contortus in vitro.
    Nixon SA; Saez NJ; Herzig V; King GF; Kotze AC
    Vet Parasitol; 2019 Jun; 270():40-46. PubMed ID: 31213240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Host pharmacokinetics and drug accumulation of anthelmintics within target helminth parasites of ruminants.
    Lifschitz A; Lanusse C; Alvarez L
    N Z Vet J; 2017 Jul; 65(4):176-184. PubMed ID: 28415922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for Novel Pharmacological Sensitivities of Transient Receptor Potential (TRP) Channels in Schistosoma mansoni.
    Bais S; Churgin MA; Fang-Yen C; Greenberg RM
    PLoS Negl Trop Dis; 2015 Dec; 9(12):e0004295. PubMed ID: 26655809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parasite associations predict infection risk: incorporating co-infections in predictive models for neglected tropical diseases.
    Clark NJ; Owada K; Ruberanziza E; Ortu G; Umulisa I; Bayisenge U; Mbonigaba JB; Mucaca JB; Lancaster W; Fenwick A; Soares Magalhães RJ; Mbituyumuremyi A
    Parasit Vectors; 2020 Mar; 13(1):138. PubMed ID: 32178706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Validation of Nematode-Specific Acetylcholine-Gated Chloride Channels as Potential Anthelmintic Drug Targets.
    Wever CM; Farrington D; Dent JA
    PLoS One; 2015; 10(9):e0138804. PubMed ID: 26393923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TRP channels in schistosomes.
    Bais S; Greenberg RM
    Int J Parasitol Drugs Drug Resist; 2016 Dec; 6(3):335-342. PubMed ID: 27496302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pharmacology of anthelmintic resistance.
    Sangster N
    Parasitology; 1996; 113 Suppl():S201-16. PubMed ID: 9051936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TRP channels as potential targets for antischistosomals.
    Bais S; Greenberg RM
    Int J Parasitol Drugs Drug Resist; 2018 Dec; 8(3):511-517. PubMed ID: 30224169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium channels of schistosomes: unresolved questions and unexpected answers.
    Salvador-Recatalà V; Greenberg RM
    Wiley Interdiscip Rev Membr Transp Signal; 2012; 1(1):85-93. PubMed ID: 22347719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacology and potential physiological significance of schistosome multidrug resistance transporters.
    Kasinathan RS; Greenberg RM
    Exp Parasitol; 2012 Sep; 132(1):2-6. PubMed ID: 21420955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution of pentameric ligand-gated ion-channels and the changing family of anthelmintic drug targets.
    Beech RN; Neveu C
    Parasitology; 2015 Feb; 142(2):303-17. PubMed ID: 25354656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An extensive comparison of the effect of anthelmintic classes on diverse nematodes.
    Hu Y; Ellis BL; Yiu YY; Miller MM; Urban JF; Shi LZ; Aroian RV
    PLoS One; 2013; 8(7):e70702. PubMed ID: 23869246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Role of Xenobiotic-Metabolizing Enzymes in Anthelmintic Deactivation and Resistance in Helminths.
    Matoušková P; Vokřál I; Lamka J; Skálová L
    Trends Parasitol; 2016 Jun; 32(6):481-491. PubMed ID: 26968642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A research agenda for helminth diseases of humans: intervention for control and elimination.
    Prichard RK; Basáñez MG; Boatin BA; McCarthy JS; García HH; Yang GJ; Sripa B; Lustigman S
    PLoS Negl Trop Dis; 2012; 6(4):e1549. PubMed ID: 22545163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overcoming drug resistance for macro parasites.
    Srivastava M; Misra-Bhattacharya S
    Future Microbiol; 2015; 10(11):1783-9. PubMed ID: 26517758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of albendazole treatment on the incidence of viral- and bacterial-induced diarrhea in school children in southern Vietnam: study protocol for a randomized controlled trial.
    Leung JM; Hong CT; Trung NH; Thi HN; Minh CN; Thi TV; Hong DT; Man DN; Knowles SC; Wolbers M; Hoang Nle T; Thwaites G; Graham AL; Baker S
    Trials; 2016 Jun; 17(1):279. PubMed ID: 27266697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ABC multidrug transporters in schistosomes and other parasitic flatworms.
    Greenberg RM
    Parasitol Int; 2013 Dec; 62(6):647-53. PubMed ID: 23474413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.