These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 25554826)
1. Composite scaffolds of dicalcium phosphate anhydrate /multi-(amino acid) copolymer: in vitro degradability and osteoblast biocompatibility. Yao Q; Ye J; Xu Q; Mo A; Gong P J Biomater Sci Polym Ed; 2015; 26(4):211-23. PubMed ID: 25554826 [TBL] [Abstract][Full Text] [Related]
2. Preparation, characterization and bioactivities of nano anhydrous calcium phosphate added gelatin-chitosan scaffolds for bone tissue engineering. Singh YP; Dasgupta S; Bhaskar R J Biomater Sci Polym Ed; 2019 Dec; 30(18):1756-1778. PubMed ID: 31526176 [TBL] [Abstract][Full Text] [Related]
3. Mechanics, degradability, bioactivity, in vitro, and in vivo biocompatibility evaluation of poly(amino acid)/hydroxyapatite/calcium sulfate composite for potential load-bearing bone repair. Fan X; Ren H; Luo X; Wang P; Lv G; Yuan H; Li H; Yan Y J Biomater Appl; 2016 Mar; 30(8):1261-72. PubMed ID: 26635202 [TBL] [Abstract][Full Text] [Related]
4. Developing novel Ca-zeolite/poly(amino acid) composites with hemostatic activity for bone substitute applications. Zhong Y; Chen X; Peng H; Ding Z; Yan Y J Biomater Sci Polym Ed; 2018 Nov; 29(16):1994-2010. PubMed ID: 30474514 [TBL] [Abstract][Full Text] [Related]
5. Compositional effects on the formation of a calcium phosphate layer and the response of osteoblast-like cells on polymer-bioactive glass composites. Lu HH; Tang A; Oh SC; Spalazzi JP; Dionisio K Biomaterials; 2005 Nov; 26(32):6323-34. PubMed ID: 15919111 [TBL] [Abstract][Full Text] [Related]
6. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. Chesnutt BM; Viano AM; Yuan Y; Yang Y; Guda T; Appleford MR; Ong JL; Haggard WO; Bumgardner JD J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307 [TBL] [Abstract][Full Text] [Related]
7. Degradability and cytocompatibility of tricalcium phosphate/poly(amino acid) composite as bone tissue implants in orthopaedic surgery. Li H; Tao S; Yan Y; Lv G; Gu Y; Luo X; Yang L; Wei J J Biomater Sci Polym Ed; 2014; 25(11):1194-210. PubMed ID: 24927061 [TBL] [Abstract][Full Text] [Related]
8. A poly(lactic acid)/calcium metaphosphate composite for bone tissue engineering. Jung Y; Kim SS; Kim YH; Kim SH; Kim BS; Kim S; Choi CY; Kim SH Biomaterials; 2005 Nov; 26(32):6314-22. PubMed ID: 15913759 [TBL] [Abstract][Full Text] [Related]
9. Composite scaffolds of nano calcium deficient hydroxyapatite/multi-(amino acid) copolymer for bone tissue regeneration. Li H; Yang L; Dong X; Gu Y; Lv G; Yan Y J Mater Sci Mater Med; 2014 May; 25(5):1257-65. PubMed ID: 24488438 [TBL] [Abstract][Full Text] [Related]
10. Biocompatibility evaluation of dicalcium phosphate/calcium sulfate/poly (amino acid) composite for orthopedic tissue engineering in vitro and in vivo. Wang P; Liu P; Peng H; Luo X; Yuan H; Zhang J; Yan Y J Biomater Sci Polym Ed; 2016 Aug; 27(11):1170-86. PubMed ID: 27126299 [TBL] [Abstract][Full Text] [Related]
11. Bio-inspired dicalcium phosphate anhydrate/poly(lactic acid) nanocomposite fibrous scaffolds for hard tissue regeneration: in situ synthesis and electrospinning. Chae T; Yang H; Ko F; Troczynski T J Biomed Mater Res A; 2014 Feb; 102(2):514-22. PubMed ID: 23520067 [TBL] [Abstract][Full Text] [Related]
12. Bone substitute biomedical material of multi-(amino acid) copolymer: in vitro degradation and biocompatibility. Li H; Yan Y; Wei J; Ma J; Gong M; Luo X; Zhang Y J Mater Sci Mater Med; 2011 Nov; 22(11):2555-63. PubMed ID: 21898161 [TBL] [Abstract][Full Text] [Related]
13. Improved biocompatibility of novel poly(L-lactic acid)/β-tricalcium phosphate scaffolds prepared by an organic solvent-free method. Zhao XF; Li XD; Kang YQ; Yuan Q Int J Nanomedicine; 2011; 6():1385-90. PubMed ID: 21760732 [TBL] [Abstract][Full Text] [Related]
14. Fast setting calcium phosphate-chitosan scaffold: mechanical properties and biocompatibility. Xu HH; Simon CG Biomaterials; 2005 Apr; 26(12):1337-48. PubMed ID: 15482821 [TBL] [Abstract][Full Text] [Related]
15. Tissue engineered bone formation using chitosan/tricalcium phosphate sponges. Lee YM; Park YJ; Lee SJ; Ku Y; Han SB; Choi SM; Klokkevold PR; Chung CP J Periodontol; 2000 Mar; 71(3):410-7. PubMed ID: 10776928 [TBL] [Abstract][Full Text] [Related]
16. Effects of Polypropylene Carbonate/Poly(D,L-lactic) Acid/Tricalcium Phosphate Elastic Composites on Improving Osteoblast Maturation. Fang HW; Kao WY; Lin PI; Chang GW; Hung YJ; Chen RM Ann Biomed Eng; 2015 Aug; 43(8):1999-2009. PubMed ID: 25549776 [TBL] [Abstract][Full Text] [Related]
17. Preparation and properties of g-TTCP/PBS nanocomposites and its in vitro biocompatibility assay. Fan RR; Zhou LX; Song W; Li de X; Zhang DM; Ye R; Zheng Y; Guo G Int J Biol Macromol; 2013 Aug; 59():227-34. PubMed ID: 23624285 [TBL] [Abstract][Full Text] [Related]
18. In vitro evaluation of biomimetic chitosan-calcium phosphate scaffolds with potential application in bone tissue engineering. Tanase CE; Sartoris A; Popa MI; Verestiuc L; Unger RE; Kirkpatrick CJ Biomed Mater; 2013 Apr; 8(2):025002. PubMed ID: 23343569 [TBL] [Abstract][Full Text] [Related]
19. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds. Jiang CP; Chen YY; Hsieh MF; Lee HM Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877 [TBL] [Abstract][Full Text] [Related]
20. The effect of bioactive glass content on synthesis and bioactivity of composite poly (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering. Yao J; Radin S; S Leboy P; Ducheyne P Biomaterials; 2005 May; 26(14):1935-43. PubMed ID: 15576167 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]