These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

600 related articles for article (PubMed ID: 25554885)

  • 1. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions.
    Lashgari I; Picano F; Breugem WP; Brandt L
    Phys Rev Lett; 2014 Dec; 113(25):254502. PubMed ID: 25554885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition from creeping via viscous-inertial to turbulent flow in fixed beds.
    Hlushkou D; Tallarek U
    J Chromatogr A; 2006 Sep; 1126(1-2):70-85. PubMed ID: 16806240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles.
    Yu Z; Lin Z; Shao X; Wang LP
    Phys Rev E; 2017 Sep; 96(3-1):033102. PubMed ID: 29346864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational study of radial particle migration and stresslet distributions in particle-laden turbulent pipe flow.
    Gupta A; Clercx HJH; Toschi F
    Eur Phys J E Soft Matter; 2018 Mar; 41(3):34. PubMed ID: 29557508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientational order in dense suspensions of elliptical particles in the non-Stokesian regime.
    Tegze G; Podmaniczky F; Somfai E; Börzsönyi T; Gránásy L
    Soft Matter; 2020 Oct; 16(38):8925-8932. PubMed ID: 32895674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emulsification in turbulent flow 1. Mean and maximum drop diameters in inertial and viscous regimes.
    Vankova N; Tcholakova S; Denkov ND; Ivanov IB; Vulchev VD; Danner T
    J Colloid Interface Sci; 2007 Aug; 312(2):363-80. PubMed ID: 17462665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tendency to occupy a statistically dominant spatial state of the flow as a driving force for turbulent transition.
    Chekmarev SF
    Chaos; 2013 Mar; 23(1):013144. PubMed ID: 23556981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dispersion in pre-turbulent and sustained turbulent flow of carbon dioxide.
    Gritti F; Fogwill M
    J Chromatogr A; 2018 Aug; 1564():176-187. PubMed ID: 29891403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing.
    Burnishev Y; Steinberg V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023001. PubMed ID: 26382497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition from the viscous to inertial regime in dense suspensions.
    Trulsson M; Andreotti B; Claudin P
    Phys Rev Lett; 2012 Sep; 109(11):118305. PubMed ID: 23005688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite lifetime of turbulence in shear flows.
    Hof B; Westerweel J; Schneider TM; Eckhardt B
    Nature; 2006 Sep; 443(7107):59-62. PubMed ID: 16957725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow regime transitions in dense non-Brownian suspensions: rheology, microstructural characterization, and constitutive modeling.
    Ness C; Sun J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012201. PubMed ID: 25679613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation and Breakup of Particles in a Shear Flow.
    Serra T; Colomer J; Casamitjana X
    J Colloid Interface Sci; 1997 Mar; 187(2):466-73. PubMed ID: 9073422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speed-resolution advantage of turbulent supercritical fluid chromatography in open tubular columns: II - Theoretical and experimental evidences.
    Gritti F; Fogwill M
    J Chromatogr A; 2017 Jun; 1501():142-150. PubMed ID: 28434714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous Pathway between the Elasto-Inertial and Elastic Turbulent States in Viscoelastic Channel Flow.
    Khalid M; Shankar V; Subramanian G
    Phys Rev Lett; 2021 Sep; 127(13):134502. PubMed ID: 34623848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clustering and viscosity in a shear flow of a particulate suspension.
    Raiskinmäki P; Aström JA; Kataja M; Latva-Kokko M; Koponen A; Jäsberg A; Shakib-Manesh A; Timonen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061403. PubMed ID: 14754200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of finite-size fibers in turbulent channel flows.
    Do-Quang M; Amberg G; Brethouwer G; Johansson AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013006. PubMed ID: 24580319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regime transitions of granular flow in a shear cell: a micromechanical study.
    Wang X; Zhu HP; Luding S; Yu AB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032203. PubMed ID: 24125257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal Scaling Laws for Dense Particle Suspensions in Turbulent Wall-Bounded Flows.
    Costa P; Picano F; Brandt L; Breugem WP
    Phys Rev Lett; 2016 Sep; 117(13):134501. PubMed ID: 27715124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheological behavior of fiber suspensions in a turbulent channel flow.
    Lin J; Zhang L; Zhang W
    J Colloid Interface Sci; 2006 Apr; 296(2):721-8. PubMed ID: 16236305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.