These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 25554912)

  • 1. High strength, molecularly thin nanoparticle membranes.
    Salerno KM; Bolintineanu DS; Lane JM; Grest GS
    Phys Rev Lett; 2014 Dec; 113(25):258301. PubMed ID: 25554912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature effects on nanostructure and mechanical properties of single-nanoparticle thick membranes.
    Salerno KM; Grest GS
    Faraday Discuss; 2015; 181():339-54. PubMed ID: 25927081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand structure and mechanical properties of single-nanoparticle-thick membranes.
    Salerno KM; Bolintineanu DS; Lane JM; Grest GS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062403. PubMed ID: 26172721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic membranes of close-packed nanoparticle arrays.
    Mueggenburg KE; Lin XM; Goldsmith RH; Jaeger HM
    Nat Mater; 2007 Sep; 6(9):656-60. PubMed ID: 17643104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and mechanical properties of large-scale freestanding nanoparticle membranes.
    He J; Kanjanaboos P; Frazer NL; Weis A; Lin XM; Jaeger HM
    Small; 2010 Jul; 6(13):1449-56. PubMed ID: 20521265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coating agent-induced mechanical behavior of 3D self-assembled nanocrystals.
    Çolak A; Wei J; Arfaoui I; Pileni MP
    Phys Chem Chem Phys; 2017 Sep; 19(35):23887-23897. PubMed ID: 28829072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elastic properties of gold supracrystals: Effects of nanocrystal size, ligand length, and nanocrystallinity.
    Liu XP; Ni Y; He LH
    J Chem Phys; 2016 Apr; 144(14):144507. PubMed ID: 27083738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of Young's modulus for nanofibrillated cellulose multilayer thin films using buckling mechanics.
    Cranston ED; Eita M; Johansson E; Netrval J; Salajková M; Arwin H; Wågberg L
    Biomacromolecules; 2011 Apr; 12(4):961-9. PubMed ID: 21395236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extreme hardening of PDMS thin films due to high compressive strain and confined thickness.
    Xu W; Chahine N; Sulchek T
    Langmuir; 2011 Jul; 27(13):8470-7. PubMed ID: 21634411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Measurement Method of Mechanical Properties for Individual Layers in Multilayered Thin Films.
    Zhou ZF; Meng MZ; Sun C; Huang QA
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31581644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between the Young's modulus of the stratum corneum and age: a pilot study.
    Hara Y; Masuda Y; Hirao T; Yoshikawa N
    Skin Res Technol; 2013 Aug; 19(3):339-45. PubMed ID: 23551131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Array of molecularly mediated thin film assemblies of nanoparticles: correlation of vapor sensing with interparticle spatial properties.
    Wang L; Shi X; Kariuki NN; Schadt M; Wang GR; Rendeng Q; Choi J; Luo J; Lu S; Zhong CJ
    J Am Chem Soc; 2007 Feb; 129(7):2161-70. PubMed ID: 17253690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of hybrid inorganic-organic framework materials: establishing fundamental structure-property relationships.
    Tan JC; Cheetham AK
    Chem Soc Rev; 2011 Feb; 40(2):1059-80. PubMed ID: 21221446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermomechanical Response of Self-Assembled Nanoparticle Membranes.
    Wang Y; Chan H; Narayanan B; McBride SP; Sankaranarayanan SKRS; Lin XM; Jaeger HM
    ACS Nano; 2017 Aug; 11(8):8026-8033. PubMed ID: 28715195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic Interaction-Driven Fabrication of Large-Area, Freestanding Nanoparticle Surfactant Membranes with Controllable Elastic Properties.
    Gu S; Wang D
    ACS Appl Mater Interfaces; 2024 Aug; 16(34):45778-45787. PubMed ID: 39140693
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple co-electrodeposition of functionalized multi-walled carbon nanotubes/chitosan composite coating on mainspring for enhanced modulus of elasticity.
    Jia FL; Gong JM; Wong KW; Du RX
    Nanotechnology; 2009 Jan; 20(1):015701. PubMed ID: 19417260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diameter-dependent bending modulus of individual multiwall boron nitride nanotubes.
    Tanur AE; Wang J; Reddy AL; Lamont DN; Yap YK; Walker GC
    J Phys Chem B; 2013 Apr; 117(16):4618-25. PubMed ID: 23350827
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformation-induced changeable Young's modulus with high strength in β-type Ti-Cr-O alloys for spinal fixture.
    Liu H; Niinomi M; Nakai M; Hieda J; Cho K
    J Mech Behav Biomed Mater; 2014 Feb; 30():205-13. PubMed ID: 24317494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for reducing peak pressure in laparoscopic grasping.
    Bos J; Doornebosch EW; Engbers JG; Nyhuis O; Dodou D
    Proc Inst Mech Eng H; 2013 Dec; 227(12):1292-300. PubMed ID: 24043225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous structure and mechanical hardness of biomedical β-type Ti-29Nb-13Ta-4.6Zr subjected to high-pressure torsion.
    Yilmazer H; Niinomi M; Nakai M; Hieda J; Todaka Y; Akahori T; Miyazaki T
    J Mech Behav Biomed Mater; 2012 Jun; 10():235-45. PubMed ID: 22520435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.