These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 25554948)
1. Highly sensitive and selective detection of miRNA: DNase I-assisted target recycling using DNA probes protected by polydopamine nanospheres. Xie Y; Lin X; Huang Y; Pan R; Zhu Z; Zhou L; Yang CJ Chem Commun (Camb); 2015 Feb; 51(11):2156-8. PubMed ID: 25554948 [TBL] [Abstract][Full Text] [Related]
2. A fluorescent biosensing platform based on the polydopamine nanospheres intergrating with Exonuclease III-assisted target recycling amplification. Qiang W; Wang X; Li W; Chen X; Li H; Xu D Biosens Bioelectron; 2015 Sep; 71():143-149. PubMed ID: 25897884 [TBL] [Abstract][Full Text] [Related]
3. A novel fluorescent biosensor for Adenosine Triphosphate detection based on the polydopamine nanospheres integrating with enzymatic recycling amplification. Ji X; Yi B; Xu Y; Zhao Y; Zhong H; Ding C Talanta; 2017 Jul; 169():8-12. PubMed ID: 28411826 [TBL] [Abstract][Full Text] [Related]
4. Polydopamine Nanosphere/Gold Nanocluster (Au NC)-Based Nanoplatform for Dual Color Simultaneous Detection of Multiple Tumor-Related MicroRNAs with DNase-I-Assisted Target Recycling Amplification. Xu S; Nie Y; Jiang L; Wang J; Xu G; Wang W; Luo X Anal Chem; 2018 Mar; 90(6):4039-4045. PubMed ID: 29488383 [TBL] [Abstract][Full Text] [Related]
5. Bioinspired sensor chip for detection of miRNA-21 based on photonic crystals assisted cyclic enzymatic amplification method. Li Q; Zhou S; Zhang T; Zheng B; Tang H Biosens Bioelectron; 2020 Feb; 150():111866. PubMed ID: 31744650 [TBL] [Abstract][Full Text] [Related]
6. Rapid and sensitive detection of NGAL for the prediction of acute kidney injury via a polydopamine nanosphere/aptamer nanocomplex coupled with DNase I-assisted recycling amplification. Hu Y; Yu XA; Zhang Y; Zhang R; Bai X; Lu M; Li J; Gu L; Liu JH; Yu BY; Tian J Analyst; 2020 May; 145(10):3620-3625. PubMed ID: 32338259 [TBL] [Abstract][Full Text] [Related]
7. A polydopamine nanosphere based highly sensitive and selective aptamer cytosensor with enzyme amplification. Fan D; Wu C; Wang K; Gu X; Liu Y; Wang E Chem Commun (Camb); 2016 Jan; 52(2):406-9. PubMed ID: 26526224 [TBL] [Abstract][Full Text] [Related]
8. An "off-on" electrochemiluminescent biosensor based on DNAzyme-assisted target recycling and rolling circle amplifications for ultrasensitive detection of microRNA. Zhang P; Wu X; Yuan R; Chai Y Anal Chem; 2015 Mar; 87(6):3202-7. PubMed ID: 25679541 [TBL] [Abstract][Full Text] [Related]
9. Graphene oxide-protected DNA probes for multiplex microRNA analysis in complex biological samples based on a cyclic enzymatic amplification method. Cui L; Lin X; Lin N; Song Y; Zhu Z; Chen X; Yang CJ Chem Commun (Camb); 2012 Jan; 48(2):194-6. PubMed ID: 21971052 [TBL] [Abstract][Full Text] [Related]
10. Highly sensitive and simultaneous detection of microRNAs in serum using stir-bar assisted magnetic DNA nanospheres-encoded probes. Shen Z; He L; Wang W; Tan L; Gan N Biosens Bioelectron; 2020 Jan; 148():111831. PubMed ID: 31706172 [TBL] [Abstract][Full Text] [Related]
11. A carbon nanoparticle and DNase I-Assisted amplified fluorescent biosensor for miRNA analysis. Li H; Li Y; Li W; Cui L; Huang G; Huang J Talanta; 2020 Jun; 213():120816. PubMed ID: 32200921 [TBL] [Abstract][Full Text] [Related]
12. A novel polydopamine-based chemiluminescence resonance energy transfer method for microRNA detection coupling duplex-specific nuclease-aided target recycling strategy. Wang Q; Yin BC; Ye BC Biosens Bioelectron; 2016 Jun; 80():366-372. PubMed ID: 26866561 [TBL] [Abstract][Full Text] [Related]
13. Dual nucleases-assisted cyclic amplification using polydopamine nanospheres-based biosensors for one-pot detection of microRNAs. Huang D; Shen P; Xu C; Xu Z; Cheng D; Zhu X; Fang M; Wang Z; Xu Z Biosens Bioelectron; 2023 Feb; 222():114957. PubMed ID: 36463653 [TBL] [Abstract][Full Text] [Related]
14. A three-line lateral flow biosensor for logic detection of microRNA based on Y-shaped junction DNA and target recycling amplification. Huang Y; Wang W; Wu T; Xu LP; Wen Y; Zhang X Anal Bioanal Chem; 2016 Nov; 408(28):8195-8202. PubMed ID: 27624762 [TBL] [Abstract][Full Text] [Related]
15. Sensitive detection of microRNA in complex biological samples by using two stages DSN-assisted target recycling signal amplification method. Zhang K; Wang K; Zhu X; Xu F; Xie M Biosens Bioelectron; 2017 Jan; 87():358-364. PubMed ID: 27589398 [TBL] [Abstract][Full Text] [Related]
16. A simple molecular beacon with duplex-specific nuclease amplification for detection of microRNA. Li Y; Zhang J; Zhao J; Zhao L; Cheng Y; Li Z Analyst; 2016 Feb; 141(3):1071-6. PubMed ID: 26688865 [TBL] [Abstract][Full Text] [Related]
17. A T7 exonuclease assisted dual-cycle signal amplification assay of miRNA using nanospheres-enhanced fluorescence polarization. Li X; Huang N; Zhang L; Zhao J; Zhao S Talanta; 2019 Sep; 202():297-302. PubMed ID: 31171185 [TBL] [Abstract][Full Text] [Related]
18. An ultrasensitive electrochemical biosensor for detection of DNA species related to oral cancer based on nuclease-assisted target recycling and amplification of DNAzyme. Chen J; Zhang J; Guo Y; Li J; Fu F; Yang HH; Chen G Chem Commun (Camb); 2011 Jul; 47(28):8004-6. PubMed ID: 21670838 [TBL] [Abstract][Full Text] [Related]
19. A highly sensitive and selective homogenous assay for profiling microRNA expression. Deng H; Shen W; Ren Y; Gao Z Biosens Bioelectron; 2014 Apr; 54():650-5. PubMed ID: 24333938 [TBL] [Abstract][Full Text] [Related]
20. DNA-fueled molecular machine enables enzyme-free target recycling amplification for electronic detection of microRNA from cancer cells with highly minimized background noise. Shi K; Dou B; Yang C; Chai Y; Yuan R; Xiang Y Anal Chem; 2015 Aug; 87(16):8578-83. PubMed ID: 26194786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]