BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25554948)

  • 21. Target-triggered three-way junction structure and polymerase/nicking enzyme synergetic isothermal quadratic DNA machine for highly specific, one-step, and rapid microRNA detection at attomolar level.
    Zhang Q; Chen F; Xu F; Zhao Y; Fan C
    Anal Chem; 2014 Aug; 86(16):8098-105. PubMed ID: 25072308
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A simple and highly sensitive fluorescence assay for microRNAs.
    Shen W; Yeo KH; Gao Z
    Analyst; 2015 Mar; 140(6):1932-8. PubMed ID: 25655238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A functionalized dumbbell probe-based cascading exponential amplification DNA machine enables amplified probing of microRNAs.
    Wang J; Li S; Xu J; Lu Y; Lin M; Wang C; Zhang C; Lin G; Jia L
    Chem Commun (Camb); 2020 Feb; 56(11):1681-1684. PubMed ID: 31939961
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polydopamine nanospheres as high-affinity signal tag towards lateral flow immunoassay for sensitive furazolidone detection.
    Liu S; Dou L; Yao X; Zhang W; Zhao B; Wang Z; Ji Y; Sun J; Xu B; Zhang D; Wang J
    Food Chem; 2020 Jun; 315():126310. PubMed ID: 32036292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensitive fluorescence sensing of T4 polynucleotide kinase activity and inhibition based on DNA/polydopamine nanospheres platform.
    Cen Y; Deng WJ; Yu RQ; Chu X
    Talanta; 2018 Apr; 180():271-276. PubMed ID: 29332810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A target-triggered dual amplification strategy for sensitive detection of microRNA.
    Lv W; Zhao J; Situ B; Li B; Ma W; Liu J; Wu Z; Wang W; Yan X; Zheng L
    Biosens Bioelectron; 2016 Sep; 83():250-5. PubMed ID: 27131998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular beacon-based junction probes for efficient detection of nucleic acids via a true target-triggered enzymatic recycling amplification.
    Kong RM; Zhang XB; Zhang LL; Huang Y; Lu DQ; Tan W; Shen GL; Yu RQ
    Anal Chem; 2011 Jan; 83(1):14-7. PubMed ID: 21117628
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrating the Polydopamine Nanosphere/Aptamers Nanoplatform with a DNase-I-Assisted Recycling Amplification Strategy for Simultaneous Detection of MMP-9 and MMP-2 during Renal Interstitial Fibrosis.
    Yu XA; Hu Y; Zhang Y; Zhang R; Bai X; Gu L; Gao H; Li R; Tian J; Yu BY
    ACS Sens; 2020 Apr; 5(4):1119-1125. PubMed ID: 32192327
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly sensitive and selective microRNA detection based on DNA-bio-bar-code and enzyme-assisted strand cycle exponential signal amplification.
    Dong H; Meng X; Dai W; Cao Y; Lu H; Zhou S; Zhang X
    Anal Chem; 2015 Apr; 87(8):4334-40. PubMed ID: 25830473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of nuclease-based target recycling signal amplification in aptasensors.
    Yan M; Bai W; Zhu C; Huang Y; Yan J; Chen A
    Biosens Bioelectron; 2016 Mar; 77():613-23. PubMed ID: 26485175
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemiluminescence detection of DNA/microRNA based on cation-exchange of CuS nanoparticles and rolling circle amplification.
    Zhang X; Liu H; Li R; Zhang N; Xiong Y; Niu S
    Chem Commun (Camb); 2015 Apr; 51(32):6952-5. PubMed ID: 25797586
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isothermal sensitive detection of microRNA using an autonomous DNA machine recycling output as input.
    Ogawa A
    Bioorg Med Chem Lett; 2010 Oct; 20(20):6056-60. PubMed ID: 20813525
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly specific and sensitive detection of microRNAs by tandem signal amplification based on duplex-specific nuclease and strand displacement.
    Liu Q; Kang PJ; Chen ZP; Shi CX; Chen Y; Yu RQ
    Chem Commun (Camb); 2019 Dec; 55(94):14210-14213. PubMed ID: 31709424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A simple G-quadruplex molecular beacon-based biosensor for highly selective detection of microRNA.
    Zhou H; Yang C; Chen H; Li X; Li Y; Fan X
    Biosens Bioelectron; 2017 Jan; 87():552-557. PubMed ID: 27611474
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A DNA-linker-DNA bifunctional probe for simultaneous SERS detection of miRNAs via symmetric signal amplification.
    Ye S; Wang M; Wang Z; Zhang N; Luo X
    Chem Commun (Camb); 2018 Jul; 54(56):7786-7789. PubMed ID: 29943776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A highly sensitive label-free electrochemical aptasensor for interferon-gamma detection based on graphene controlled assembly and nuclease cleavage-assisted target recycling amplification.
    Yan G; Wang Y; He X; Wang K; Liu J; Du Y
    Biosens Bioelectron; 2013 Jun; 44():57-63. PubMed ID: 23391707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A self-assembly amplification strategy for ultra-sensitive detection of microRNA based on phosphorothioated probes.
    Abdullah Al-Maskri AA; Jin G; Li Y; Talap J; Almoiliqy M; Apu C; Zeng S; Zhou Y; Cai S
    Talanta; 2022 Nov; 249():123618. PubMed ID: 35688076
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ quantitation of intracellular microRNA in the whole cell cycle with a functionalized carbon nanosphere probe.
    Liao X; Ju H
    Chem Commun (Camb); 2015 Feb; 51(11):2141-4. PubMed ID: 25553789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Supersandwich cytosensor for selective and ultrasensitive detection of cancer cells using aptamer-DNA concatamer-quantum dots probes.
    Liu H; Xu S; He Z; Deng A; Zhu JJ
    Anal Chem; 2013 Mar; 85(6):3385-92. PubMed ID: 23418929
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visual Detection of Multiplex MicroRNAs Using Cationic Conjugated Polymer Materials.
    Zhou Y; Zhang J; Zhao L; Li Y; Chen H; Li S; Cheng Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1520-6. PubMed ID: 26709618
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.