These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 25555107)
21. Enzyme activation through the utilization of intrinsic dianion binding energy. Amyes TL; Malabanan MM; Zhai X; Reyes AC; Richard JP Protein Eng Des Sel; 2017 Mar; 30(3):157-165. PubMed ID: 27903763 [TBL] [Abstract][Full Text] [Related]
22. A substrate in pieces: allosteric activation of glycerol 3-phosphate dehydrogenase (NAD+) by phosphite dianion. Tsang WY; Amyes TL; Richard JP Biochemistry; 2008 Apr; 47(16):4575-82. PubMed ID: 18376850 [TBL] [Abstract][Full Text] [Related]
23. Enzyme Architecture: The Role of a Flexible Loop in Activation of Glycerol-3-phosphate Dehydrogenase for Catalysis of Hydride Transfer. He R; Reyes AC; Amyes TL; Richard JP Biochemistry; 2018 Jun; 57(23):3227-3236. PubMed ID: 29337541 [TBL] [Abstract][Full Text] [Related]
24. Linear Free Energy Relationships for Enzymatic Reactions: Fresh Insight from a Venerable Probe. Richard JP; Cristobal JR; Amyes TL Acc Chem Res; 2021 May; 54(10):2532-2542. PubMed ID: 33939414 [TBL] [Abstract][Full Text] [Related]
25. Yeast orotidine-5'-phosphate decarboxylase: steady-state and pre-steady-state analysis of the kinetic mechanism of substrate decarboxylation. Porter DJ; Short SA Biochemistry; 2000 Sep; 39(38):11788-800. PubMed ID: 10995247 [TBL] [Abstract][Full Text] [Related]
26. Enzymatic catalysis of proton transfer at carbon: activation of triosephosphate isomerase by phosphite dianion. Amyes TL; Richard JP Biochemistry; 2007 May; 46(19):5841-54. PubMed ID: 17444661 [TBL] [Abstract][Full Text] [Related]
27. Activation of orotidine 5'-monophosphate decarboxylase by phosphite dianion: the whole substrate is the sum of two parts. Amyes TL; Richard JP; Tait JJ J Am Chem Soc; 2005 Nov; 127(45):15708-9. PubMed ID: 16277505 [TBL] [Abstract][Full Text] [Related]
28. Orotidine 5'-Monophosphate Decarboxylase: The Operation of Active Site Chains Within and Across Protein Subunits. Brandão TAS; Richard JP Biochemistry; 2020 Jun; 59(21):2032-2040. PubMed ID: 32374983 [TBL] [Abstract][Full Text] [Related]
29. Role of Ligand-Driven Conformational Changes in Enzyme Catalysis: Modeling the Reactivity of the Catalytic Cage of Triosephosphate Isomerase. Kulkarni YS; Liao Q; Byléhn F; Amyes TL; Richard JP; Kamerlin SCL J Am Chem Soc; 2018 Mar; 140(11):3854-3857. PubMed ID: 29516737 [TBL] [Abstract][Full Text] [Related]
30. Mechanism of the orotidine 5'-monophosphate decarboxylase-catalyzed reaction: evidence for substrate destabilization. Chan KK; Wood BM; Fedorov AA; Fedorov EV; Imker HJ; Amyes TL; Richard JP; Almo SC; Gerlt JA Biochemistry; 2009 Jun; 48(24):5518-31. PubMed ID: 19435314 [TBL] [Abstract][Full Text] [Related]
31. Role of enzyme-ribofuranosyl contacts in the ground state and transition state for orotidine 5'-phosphate decarboxylase: a role for substrate destabilization? Miller BG; Butterfoss GL; Short SA; Wolfenden R Biochemistry; 2001 May; 40(21):6227-32. PubMed ID: 11371183 [TBL] [Abstract][Full Text] [Related]
32. Contribution of enzyme-phosphoribosyl contacts to catalysis by orotidine 5'-phosphate decarboxylase. Miller BG; Snider MJ; Short SA; Wolfenden R Biochemistry; 2000 Jul; 39(28):8113-8. PubMed ID: 10889016 [TBL] [Abstract][Full Text] [Related]
33. Mechanism of the orotidine 5'-monophosphate decarboxylase-catalyzed reaction: effect of solvent viscosity on kinetic constants. Wood BM; Chan KK; Amyes TL; Richard JP; Gerlt JA Biochemistry; 2009 Jun; 48(24):5510-7. PubMed ID: 19435313 [TBL] [Abstract][Full Text] [Related]
34. Role of Lys-12 in catalysis by triosephosphate isomerase: a two-part substrate approach. Go MK; Koudelka A; Amyes TL; Richard JP Biochemistry; 2010 Jun; 49(25):5377-89. PubMed ID: 20481463 [TBL] [Abstract][Full Text] [Related]
35. A paradigm for enzyme-catalyzed proton transfer at carbon: triosephosphate isomerase. Richard JP Biochemistry; 2012 Apr; 51(13):2652-61. PubMed ID: 22409228 [TBL] [Abstract][Full Text] [Related]
36. Conformational changes in orotidine 5'-monophosphate decarboxylase: a structure-based explanation for how the 5'-phosphate group activates the enzyme. Desai BJ; Wood BM; Fedorov AA; Fedorov EV; Goryanova B; Amyes TL; Richard JP; Almo SC; Gerlt JA Biochemistry; 2012 Oct; 51(43):8665-78. PubMed ID: 23030629 [TBL] [Abstract][Full Text] [Related]
37. Dissecting the total transition state stabilization provided by amino acid side chains at orotidine 5'-monophosphate decarboxylase: a two-part substrate approach. Barnett SA; Amyes TL; Wood BM; Gerlt JA; Richard JP Biochemistry; 2008 Jul; 47(30):7785-7. PubMed ID: 18598058 [TBL] [Abstract][Full Text] [Related]
38. Substrate distortion contributes to the catalysis of orotidine 5'-monophosphate decarboxylase. Fujihashi M; Ishida T; Kuroda S; Kotra LP; Pai EF; Miki K J Am Chem Soc; 2013 Nov; 135(46):17432-43. PubMed ID: 24151964 [TBL] [Abstract][Full Text] [Related]
39. Adenylate Kinase-Catalyzed Reactions of AMP in Pieces: Specificity for Catalysis at the Nucleoside Activator and Dianion Catalytic Sites. Fernandez PL; Richard JP Biochemistry; 2022 Dec; 61(23):2766-2775. PubMed ID: 36413937 [TBL] [Abstract][Full Text] [Related]