These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 25555107)
41. Product deuterium isotope effects for orotidine 5'-monophosphate decarboxylase: effect of changing substrate and enzyme structure on the partitioning of the vinyl carbanion reaction intermediate. Toth K; Amyes TL; Wood BM; Chan K; Gerlt JA; Richard JP J Am Chem Soc; 2010 May; 132(20):7018-24. PubMed ID: 20441167 [TBL] [Abstract][Full Text] [Related]
42. Enabling Role of Ligand-Driven Conformational Changes in Enzyme Evolution. Richard JP Biochemistry; 2022 Aug; 61(15):1533-1542. PubMed ID: 35829700 [TBL] [Abstract][Full Text] [Related]
43. Phosphodianion Activation of Enzymes for Catalysis of Central Metabolic Reactions. Fernandez PL; Nagorski RW; Cristobal JR; Amyes TL; Richard JP J Am Chem Soc; 2021 Feb; 143(7):2694-2698. PubMed ID: 33560827 [TBL] [Abstract][Full Text] [Related]
44. Enzyme architecture: optimization of transition state stabilization from a cation-phosphodianion pair. Reyes AC; Koudelka AP; Amyes TL; Richard JP J Am Chem Soc; 2015 Apr; 137(16):5312-5. PubMed ID: 25884759 [TBL] [Abstract][Full Text] [Related]
45. The effective molarity of the substrate phosphoryl group in the transition state for yeast OMP decarboxylase. Sievers A; Wolfenden R Bioorg Chem; 2005 Feb; 33(1):45-52. PubMed ID: 15668182 [TBL] [Abstract][Full Text] [Related]
46. A role for flexible loops in enzyme catalysis. Malabanan MM; Amyes TL; Richard JP Curr Opin Struct Biol; 2010 Dec; 20(6):702-10. PubMed ID: 20951028 [TBL] [Abstract][Full Text] [Related]
47. Mechanism of OMP decarboxylation in orotidine 5'-monophosphate decarboxylase. Hu H; Boone A; Yang W J Am Chem Soc; 2008 Nov; 130(44):14493-503. PubMed ID: 18839943 [TBL] [Abstract][Full Text] [Related]
48. The Organization of Active Site Side Chains of Glycerol-3-phosphate Dehydrogenase Promotes Efficient Enzyme Catalysis and Rescue of Variant Enzymes. Cristobal JR; Reyes AC; Richard JP Biochemistry; 2020 Apr; 59(16):1582-1591. PubMed ID: 32250105 [TBL] [Abstract][Full Text] [Related]
49. Enzyme Architecture: A Startling Role for Asn270 in Glycerol 3-Phosphate Dehydrogenase-Catalyzed Hydride Transfer. Reyes AC; Amyes TL; Richard JP Biochemistry; 2016 Mar; 55(10):1429-32. PubMed ID: 26926520 [TBL] [Abstract][Full Text] [Related]
50. Enzyme architecture: remarkably similar transition states for triosephosphate isomerase-catalyzed reactions of the whole substrate and the substrate in pieces. Zhai X; Amyes TL; Richard JP J Am Chem Soc; 2014 Mar; 136(11):4145-8. PubMed ID: 24588650 [TBL] [Abstract][Full Text] [Related]
51. A reexamination of the substrate utilization of 2-thioorotidine-5'-monophosphate by yeast orotidine-5'-monophosphate decarboxylase. Smiley JA; Hay KM; Levison BS Bioorg Chem; 2001 Apr; 29(2):96-106. PubMed ID: 11300698 [TBL] [Abstract][Full Text] [Related]
52. Structure-Reactivity Effects on Intrinsic Primary Kinetic Isotope Effects for Hydride Transfer Catalyzed by Glycerol-3-phosphate Dehydrogenase. Reyes AC; Amyes TL; Richard JP J Am Chem Soc; 2016 Nov; 138(44):14526-14529. PubMed ID: 27769116 [TBL] [Abstract][Full Text] [Related]
53. Protein Flexibility and Stiffness Enable Efficient Enzymatic Catalysis. Richard JP J Am Chem Soc; 2019 Feb; 141(8):3320-3331. PubMed ID: 30703322 [TBL] [Abstract][Full Text] [Related]
54. A proficient enzyme revisited: the predicted mechanism for orotidine monophosphate decarboxylase. Lee JK; Houk KN Science; 1997 May; 276(5314):942-5. PubMed ID: 9139656 [TBL] [Abstract][Full Text] [Related]
55. Modest catalysis of the decarboxylation of orotate by hydrogen bonding: a theoretical model for orotidine- 5' -monophosphate decarboxylase. Shem DL; Gronert S; Wu W Bioorg Chem; 2004 Apr; 32(2):76-81. PubMed ID: 14990306 [TBL] [Abstract][Full Text] [Related]
56. A proficient enzyme: insights on the mechanism of orotidine monophosphate decarboxylase from computer simulations. Raugei S; Cascella M; Carloni P J Am Chem Soc; 2004 Dec; 126(48):15730-7. PubMed ID: 15571395 [TBL] [Abstract][Full Text] [Related]
57. Activation of R235A mutant orotidine 5'-monophosphate decarboxylase by the guanidinium cation: effective molarity of the cationic side chain of Arg-235. Barnett SA; Amyes TL; Wood BM; Gerlt JA; Richard JP Biochemistry; 2010 Feb; 49(5):824-6. PubMed ID: 20050635 [TBL] [Abstract][Full Text] [Related]
59. Evolution of enzymatic activities in the orotidine 5'-monophosphate decarboxylase suprafamily: mechanistic evidence for a proton relay system in the active site of 3-keto-L-gulonate 6-phosphate decarboxylase. Yew WS; Wise EL; Rayment I; Gerlt JA Biochemistry; 2004 Jun; 43(21):6427-37. PubMed ID: 15157077 [TBL] [Abstract][Full Text] [Related]
60. Triosephosphate isomerase: removal of a putatively electrophilic histidine residue results in a subtle change in catalytic mechanism. Nickbarg EB; Davenport RC; Petsko GA; Knowles JR Biochemistry; 1988 Aug; 27(16):5948-60. PubMed ID: 2847777 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]