BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25555703)

  • 41. Enhanced phytase production from Achromobacter sp. PB-01 using wheat bran as substrate: prospective application for animal feed.
    Kumar P; Chamoli S; Agrawal S
    Biotechnol Prog; 2012; 28(6):1432-42. PubMed ID: 22915503
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Corn seeds as bioreactors for the production of phytase in the feed industry.
    Chen R; Zhang C; Yao B; Xue G; Yang W; Zhou X; Zhang J; Sun C; Chen P; Fan Y
    J Biotechnol; 2013 May; 165(2):120-6. PubMed ID: 23473991
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of phosphate concentration on phytase production and the reduction of phytic acid content in canola meal by Aspergillus carbonarius during a solid-state fermentation process.
    al-Asheh S; Duvnjak Z
    Appl Microbiol Biotechnol; 1995 Apr; 43(1):25-30. PubMed ID: 7766133
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Morphology engineering of basidiomycetes for improved laccase biosynthesis.
    Antecka A; Blatkiewicz M; Bizukojć M; Ledakowicz S
    Biotechnol Lett; 2016 Apr; 38(4):667-72. PubMed ID: 26699894
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solid-state fermentation of phytase from cassava dregs.
    Hong K; Ma Y; Li M
    Appl Biochem Biotechnol; 2001; 91-93():777-85. PubMed ID: 11963905
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved phytase production by a thermophilic mould Sporotrichum thermophile in submerged fermentation due to statistical optimization.
    Singh B; Satyanarayana T
    Bioresour Technol; 2008 Mar; 99(4):824-30. PubMed ID: 17350826
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Morphology engineering of Aspergillus niger for improved enzyme production.
    Driouch H; Sommer B; Wittmann C
    Biotechnol Bioeng; 2010 Apr; 105(6):1058-68. PubMed ID: 19953678
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High Cell Density Process for Constitutive Production of a Recombinant Phytase in Thermotolerant Methylotrophic Yeast Ogataea thermomethanolica Using Table Sugar as Carbon Source.
    Charoenrat T; Antimanon S; Kocharin K; Tanapongpipat S; Roongsawang N
    Appl Biochem Biotechnol; 2016 Dec; 180(8):1618-1634. PubMed ID: 27444181
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of low doses of Aspergillus niger phytase on growth performance, bone strength, and nutrient absorption and excretion by growing and finishing swine fed corn-soybean meal diets deficient in available phosphorus and calcium.
    Veum TL; Ellersieck MR
    J Anim Sci; 2008 Apr; 86(4):858-70. PubMed ID: 18156343
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Disulfide bonds are necessary for structure and activity in Aspergillus ficuum phytase.
    Ullah AH; Mullaney EJ
    Biochem Biophys Res Commun; 1996 Oct; 227(2):311-7. PubMed ID: 8878514
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aspergillus ficuum phytase: complete primary structure elucidation by chemical sequencing.
    Ullah AH; Dischinger HC
    Biochem Biophys Res Commun; 1993 Apr; 192(2):747-53. PubMed ID: 8387289
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancement of schizophyllan production in Schizophyllum commune using microparticles in medium.
    Alizadeh V; Shojaosadati SA; Zamir SM
    Bioprocess Biosyst Eng; 2021 Feb; 44(2):317-328. PubMed ID: 32955618
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Overexpression of the phytase from Escherichia coli and its extracellular production in bioreactors.
    Miksch G; Kleist S; Friehs K; Flaschel E
    Appl Microbiol Biotechnol; 2002 Sep; 59(6):685-94. PubMed ID: 12226725
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Utilization of orange peel, a food industrial waste, in the production of exo-polygalacturonase by pellet forming Aspergillus sojae.
    Buyukkileci AO; Lahore MF; Tari C
    Bioprocess Biosyst Eng; 2015 Apr; 38(4):749-60. PubMed ID: 25352336
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of methyl oleate and microparticle-enhanced cultivation on echinocandin B fermentation titer.
    Niu K; Wu XP; Hu XL; Zou SP; Hu ZC; Liu ZQ; Zheng YG
    Bioprocess Biosyst Eng; 2020 Nov; 43(11):2009-2015. PubMed ID: 32557175
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Morphological evolution of various fungal species in the presence and absence of aluminum oxide microparticles: Comparative and quantitative insights into microparticle-enhanced cultivation (MPEC).
    Kowalska A; Boruta T; Bizukojć M
    Microbiologyopen; 2018 Oct; 7(5):e00603. PubMed ID: 29504287
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient production of mutant phytase (phyA-7) derived from Selenomonas ruminantium using recombinant Escherichia coli in pilot scale.
    Chi-Wei Lan J; Chang CK; Wu HS
    J Biosci Bioeng; 2014 Sep; 118(3):305-10. PubMed ID: 24686155
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A multistrategy approach for improving the expression of E. coli phytase in Pichia pastoris.
    Helian Y; Gai Y; Fang H; Sun Y; Zhang D
    J Ind Microbiol Biotechnol; 2020 Dec; 47(12):1161-1172. PubMed ID: 32935229
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Aspergillus ficuum phytase activity is inhibited by cereal grain components.
    Bekalu ZE; Madsen CK; Dionisio G; Brinch-Pedersen H
    PLoS One; 2017; 12(5):e0176838. PubMed ID: 28472144
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimization of phytase production from potato waste using Aspergillus ficuum.
    Tian M; Yuan Q
    3 Biotech; 2016 Dec; 6(2):256. PubMed ID: 28330328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.