These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 25556096)

  • 1. Characterization of glycerol phosphate oxidase from Streptococcus pneumoniae and its application for ketose synthesis.
    Li Z; Qiao Y; Cai L; Nakanishi H; Gao XD
    Bioorg Med Chem Lett; 2015 Feb; 25(3):504-7. PubMed ID: 25556096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cascade synthesis of rare ketoses by whole cells based on L-rhamnulose-1-phosphate aldolase.
    Chen Z; Li Z; Li F; Wang M; Wang N; Gao XD
    Enzyme Microb Technol; 2020 Feb; 133():109456. PubMed ID: 31874684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of alditol oxidase from Streptomyces coelicolor and its application in the production of rare sugars.
    Chen Z; Li Z; Li F; Wang N; Gao XD
    Bioorg Med Chem; 2020 May; 28(10):115464. PubMed ID: 32249029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathway Construction in Corynebacterium glutamicum and Strain Engineering To Produce Rare Sugars from Glycerol.
    Yang J; Zhu Y; Men Y; Sun S; Zeng Y; Zhang Y; Sun Y; Ma Y
    J Agric Food Chem; 2016 Dec; 64(50):9497-9505. PubMed ID: 27998065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Pot Multienzyme Synthesis of Rare Ketoses from Glycerol.
    Li Z; Li F; Cai L; Chen Z; Qin L; Gao XD
    J Agric Food Chem; 2020 Feb; 68(5):1347-1353. PubMed ID: 31961681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of l-Sorbose and l-Psicose Based on C-C Bond Formation Catalyzed by Aldolases in an Engineered Corynebacterium glutamicum Strain.
    Yang J; Li J; Men Y; Zhu Y; Zhang Y; Sun Y; Ma Y
    Appl Environ Microbiol; 2015 Jul; 81(13):4284-94. PubMed ID: 25888171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in the synthesis of rare sugars using DHAP-dependent aldolases.
    Li A; Cai L; Chen Z; Wang M; Wang N; Nakanishi H; Gao XD; Li Z
    Carbohydr Res; 2017 Nov; 452():108-115. PubMed ID: 29096183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sugar analog synthesis by in vitro biocatalytic cascade: A comparison of alternative enzyme complements for dihydroxyacetone phosphate production as a precursor to rare chiral sugar synthesis.
    Hartley CJ; French NG; Scoble JA; Williams CC; Churches QI; Frazer AR; Taylor MC; Coia G; Simpson G; Turner NJ; Scott C
    PLoS One; 2017; 12(11):e0184183. PubMed ID: 29112947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of rare ketoses through constructing a recombination pathway in an engineered Corynebacterium glutamicum.
    Yang J; Zhu Y; Li J; Men Y; Sun Y; Ma Y
    Biotechnol Bioeng; 2015 Jan; 112(1):168-80. PubMed ID: 25060350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic mechanism of L-α-glycerophosphate oxidase from Mycoplasma pneumoniae.
    Maenpuen S; Watthaisong P; Supon P; Sucharitakul J; Parsonage D; Karplus PA; Claiborne A; Chaiyen P
    FEBS J; 2015 Aug; 282(16):3043-59. PubMed ID: 25712468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot synthesis of L-Fructose using coupled multienzyme systems based on rhamnulose-1-phosphate aldolase.
    Franke D; Machajewski T; Hsu CC; Wong CH
    J Org Chem; 2003 Aug; 68(17):6828-31. PubMed ID: 12919060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An artificial multienzyme cascade for the whole-cell synthesis of rare ketoses from glycerol.
    Gao Y; Li F; Wang Y; Chen Z; Li Z
    Biotechnol Lett; 2023 Oct; 45(10):1355-1364. PubMed ID: 37486554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Branched-Chain Sugars with a DHAP-Dependent Aldolase: Ketones are Electrophile Substrates of Rhamnulose-1-phosphate Aldolases.
    Laurent V; Darii E; Aujon A; Debacker M; Petit JL; Hélaine V; Liptaj T; Breza M; Mariage A; Nauton L; Traïkia M; Salanoubat M; Lemaire M; Guérard-Hélaine C; de Berardinis V
    Angew Chem Int Ed Engl; 2018 May; 57(19):5467-5471. PubMed ID: 29542859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced aldehyde dehydrogenase activity by regenerating NAD+ in Klebsiella pneumoniae and implications for the glycerol dissimilation pathways.
    Li Y; Su M; Ge X; Tian P
    Biotechnol Lett; 2013 Oct; 35(10):1609-15. PubMed ID: 23794046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-pot four-enzyme synthesis of ketoses with fructose 1,6-bisphosphate aldolases from Staphylococcus carnosus and rabbit muscle.
    Li Z; Cai L; Wei M; Wang PG
    Carbohydr Res; 2012 Aug; 357():143-6. PubMed ID: 22727596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of sn-glycerol-1-phosphate dehydrogenase activity from genomic information on a hyperthermophilic archaeon, Sulfolobus tokodaii strain 7.
    Koga Y; Ohga M; Tsujimura M; Morii H; Kawarabayasi Y
    Biosci Biotechnol Biochem; 2006 Jan; 70(1):282-5. PubMed ID: 16428851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of four microbial Class II fructose 1,6-bisphosphate aldolase enzymes for use as biocatalysts.
    Labbé G; de Groot S; Rasmusson T; Milojevic G; Dmitrienko GI; Guillemette JG
    Protein Expr Purif; 2011 Dec; 80(2):224-33. PubMed ID: 21763425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosynthesis in Escherichia coli of sn-glycerol 3-phosphate, a precursor of phospholipid. Kinetic characterization of wild type and feedback-resistant forms of the biosynthetic sn-glycerol-3-phosphate dehydrogenase.
    Edgar JR; Bell RM
    J Biol Chem; 1978 Sep; 253(18):6354-63. PubMed ID: 28326
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo selection for the directed evolution of L-rhamnulose aldolase from L-rhamnulose-1-phosphate aldolase (RhaD).
    Sugiyama M; Hong Z; Greenberg WA; Wong CH
    Bioorg Med Chem; 2007 Sep; 15(17):5905-11. PubMed ID: 17572092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of a bacterial glycerol-1-phosphate dehydrogenase: Ni(2+)-dependent AraM from Bacillus subtilis.
    Guldan H; Sterner R; Babinger P
    Biochemistry; 2008 Jul; 47(28):7376-84. PubMed ID: 18558723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.