BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

894 related articles for article (PubMed ID: 25556338)

  • 21. Net ecosystem exchange of CO2 with rapidly changing high Arctic landscapes.
    Emmerton CA; St Louis VL; Humphreys ER; Gamon JA; Barker JD; Pastorello GZ
    Glob Chang Biol; 2016 Mar; 22(3):1185-200. PubMed ID: 26279166
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term changes in the daytime growing season carbon dioxide exchange following increased temperature and snow cover in arctic tundra.
    Hermesdorf L; Liu Y; Michelsen A; Westergaard-Nielsen A; Mortensen LH; Jepsen MS; Sigsgaard C; Elberling B
    Glob Chang Biol; 2024 Jan; 30(1):e17087. PubMed ID: 38273494
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [CO2-exchange in tundra ecosystems of Vaygach Island during the unusually warm and dry vegetation season].
    Zamolodchikov DG
    Zh Obshch Biol; 2015; 76(2):83-98. PubMed ID: 25985484
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Shrub encroachment in Arctic tundra: Betula nana effects on above- and belowground litter decomposition.
    McLaren JR; Buckeridge KM; van de Weg MJ; Shaver GR; Schimel JP; Gough L
    Ecology; 2017 May; 98(5):1361-1376. PubMed ID: 28263375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Litter decomposition in moist acidic and non-acidic tundra with different glacial histories.
    Hobbie SE; Gough L
    Oecologia; 2004 Jun; 140(1):113-24. PubMed ID: 15164284
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of arctic shrub expansion on biophysical vs. biogeochemical drivers of litter decomposition.
    DeMarco J; Mack MC; Bret-Harte MS
    Ecology; 2014 Jul; 95(7):1861-75. PubMed ID: 25163119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Climatic and biotic extreme events moderate long-term responses of above- and belowground sub-Arctic heathland communities to climate change.
    Bokhorst S; Phoenix GK; Berg MP; Callaghan TV; Kirby-Lambert C; Bjerke JW
    Glob Chang Biol; 2015 Nov; 21(11):4063-75. PubMed ID: 26111101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vegetation shift from deciduous to evergreen dwarf shrubs in response to selective herbivory offsets carbon losses: evidence from 19 years of warming and simulated herbivory in the subarctic tundra.
    Ylänne H; Stark S; Tolvanen A
    Glob Chang Biol; 2015 Oct; 21(10):3696-711. PubMed ID: 25950664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Range Expansion of Moose in Arctic Alaska Linked to Warming and Increased Shrub Habitat.
    Tape KD; Gustine DD; Ruess RW; Adams LG; Clark JA
    PLoS One; 2016; 11(4):e0152636. PubMed ID: 27074023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Delayed herbivory by migratory geese increases summer-long CO
    Leffler AJ; Beard KH; Kelsey KC; Choi RT; Schmutz JA; Welker JM
    Glob Chang Biol; 2019 Jan; 25(1):277-289. PubMed ID: 30295398
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Environmental Limits of Tall Shrubs in Alaska's Arctic National Parks.
    Swanson DK
    PLoS One; 2015; 10(9):e0138387. PubMed ID: 26379243
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Historical and projected trends in landscape drivers affecting carbon dynamics in Alaska.
    Pastick NJ; Duffy P; Genet H; Rupp TS; Wylie BK; Johnson KD; Jorgenson MT; Bliss N; McGuire AD; Jafarov EE; Knight JF
    Ecol Appl; 2017 Jul; 27(5):1383-1402. PubMed ID: 28390104
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cross-scale regulation of seasonal microclimate by vegetation and snow in the Arctic tundra.
    von Oppen J; Assmann JJ; Bjorkman AD; Treier UA; Elberling B; Nabe-Nielsen J; Normand S
    Glob Chang Biol; 2022 Dec; 28(24):7296-7312. PubMed ID: 36083034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The response of boreal peatland community composition and NDVI to hydrologic change, warming, and elevated carbon dioxide.
    McPartland MY; Kane ES; Falkowski MJ; Kolka R; Turetsky MR; Palik B; Montgomery RA
    Glob Chang Biol; 2019 Jan; 25(1):93-107. PubMed ID: 30295397
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel wildlife in the Arctic: the influence of changing riparian ecosystems and shrub habitat expansion on snowshoe hares.
    Tape KD; Christie K; Carroll G; O'Donnell JA
    Glob Chang Biol; 2016 Jan; 22(1):208-19. PubMed ID: 26527375
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Local snow melt and temperature-but not regional sea ice-explain variation in spring phenology in coastal Arctic tundra.
    Assmann JJ; Myers-Smith IH; Phillimore AB; Bjorkman AD; Ennos RE; Prevéy JS; Henry GHR; Schmidt NM; Hollister RD
    Glob Chang Biol; 2019 Jul; 25(7):2258-2274. PubMed ID: 30963662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental herbivore exclusion, shrub introduction, and carbon sequestration in alpine plant communities.
    Sørensen MV; Graae BJ; Hagen D; Enquist BJ; Nystuen KO; Strimbeck R
    BMC Ecol; 2018 Aug; 18(1):29. PubMed ID: 30165832
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States.
    Buchmann N; Kao WY; Ehleringer J
    Oecologia; 1997 Mar; 110(1):109-119. PubMed ID: 28307459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects on the function of Arctic ecosystems in the short- and long-term perspectives.
    Callaghan TV; Björn LO; Chernov Y; Chapin T; Christensen TR; Huntley B; Ims RA; Johansson M; Jolly D; Jonasson S; Matveyeva N; Panikov N; Oechel W; Shaver G
    Ambio; 2004 Nov; 33(7):448-58. PubMed ID: 15573572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid carbon turnover beneath shrub and tree vegetation is associated with low soil carbon stocks at a subarctic treeline.
    Parker TC; Subke JA; Wookey PA
    Glob Chang Biol; 2015 May; 21(5):2070-81. PubMed ID: 25367088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 45.