BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

564 related articles for article (PubMed ID: 25556834)

  • 1. Reinstating aberrant mTORC1 activity in Huntington's disease mice improves disease phenotypes.
    Lee JH; Tecedor L; Chen YH; Monteys AM; Sowada MJ; Thompson LM; Davidson BL
    Neuron; 2015 Jan; 85(2):303-15. PubMed ID: 25556834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Huntingtin promotes mTORC1 signaling in the pathogenesis of Huntington's disease.
    Pryor WM; Biagioli M; Shahani N; Swarnkar S; Huang WC; Page DT; MacDonald ME; Subramaniam S
    Sci Signal; 2014 Oct; 7(349):ra103. PubMed ID: 25351248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurodegenerative disease: Restoring balance in Huntington disease.
    Whalley K
    Nat Rev Neurosci; 2015 Feb; 16(2):66-7. PubMed ID: 25601773
    [No Abstract]   [Full Text] [Related]  

  • 4. Huntington's disease is a disorder of the corpus striatum: focus on Rhes (Ras homologue enriched in the striatum).
    Subramaniam S; Snyder SH
    Neuropharmacology; 2011 Jun; 60(7-8):1187-92. PubMed ID: 21044641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ectopic expression of the striatal-enriched GTPase Rhes elicits cerebellar degeneration and an ataxia phenotype in Huntington's disease.
    Swarnkar S; Chen Y; Pryor WM; Shahani N; Page DT; Subramaniam S
    Neurobiol Dis; 2015 Oct; 82():66-77. PubMed ID: 26048156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global Rhes knockout in the Q175 Huntington's disease mouse model.
    Heikkinen T; Bragge T; Kuosmanen J; Parkkari T; Gustafsson S; Kwan M; Beltran J; Ghavami A; Subramaniam S; Shahani N; Ramírez-Jarquín UN; Park L; Muñoz-Sanjuán I; Marchionini DM
    PLoS One; 2021; 16(10):e0258486. PubMed ID: 34648564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhes, a striatal-selective protein implicated in Huntington disease, binds beclin-1 and activates autophagy.
    Mealer RG; Murray AJ; Shahani N; Subramaniam S; Snyder SH
    J Biol Chem; 2014 Feb; 289(6):3547-54. PubMed ID: 24324270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhes suppression enhances disease phenotypes in Huntington's disease mice.
    Lee JH; Sowada MJ; Boudreau RL; Aerts AM; Thedens DR; Nopoulos P; Davidson BL
    J Huntingtons Dis; 2014; 3(1):65-71. PubMed ID: 25062765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MCRS1 binds and couples Rheb to amino acid-dependent mTORC1 activation.
    Fawal MA; Brandt M; Djouder N
    Dev Cell; 2015 Apr; 33(1):67-81. PubMed ID: 25816988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-guided mutation of the conserved G3-box glycine in Rheb generates a constitutively activated regulator of mammalian target of rapamycin (mTOR).
    Mazhab-Jafari MT; Marshall CB; Ho J; Ishiyama N; Stambolic V; Ikura M
    J Biol Chem; 2014 May; 289(18):12195-201. PubMed ID: 24648513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic deletion of Rhes or pharmacological blockade of mTORC1 prevent striato-nigral neurons activation in levodopa-induced dyskinesia.
    Brugnoli A; Napolitano F; Usiello A; Morari M
    Neurobiol Dis; 2016 Jan; 85():155-163. PubMed ID: 26522958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Rhes, Ras homolog enriched in striatum, in neurodegenerative processes.
    Harrison LM; Lahoste GJ
    Exp Cell Res; 2013 Sep; 319(15):2310-5. PubMed ID: 23583659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel BAC Mouse Model of Huntington's Disease with 225 CAG Repeats Exhibits an Early Widespread and Stable Degenerative Phenotype.
    Wegrzynowicz M; Bichell TJ; Soares BD; Loth MK; McGlothan JS; Mori S; Alikhan FS; Hua K; Coughlin JM; Holt HK; Jetter CS; Pomper MG; Osmand AP; Guilarte TR; Bowman AB
    J Huntingtons Dis; 2015; 4(1):17-36. PubMed ID: 26333255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weak membrane interactions allow Rheb to activate mTORC1 signaling without major lysosome enrichment.
    Angarola B; Ferguson SM
    Mol Biol Cell; 2019 Oct; 30(22):2750-2760. PubMed ID: 31532697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheb/mTORC1 signaling promotes kidney fibroblast activation and fibrosis.
    Jiang L; Xu L; Mao J; Li J; Fang L; Zhou Y; Liu W; He W; Zhao AZ; Yang J; Dai C
    J Am Soc Nephrol; 2013 Jun; 24(7):1114-26. PubMed ID: 23661807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheb1-mTORC1 maintains macrophage differentiation and phagocytosis in mice.
    Wang X; Li M; Gao Y; Gao J; Yang W; Liang H; Ji Q; Li Y; Liu H; Huang J; Cheng T; Yuan W
    Exp Cell Res; 2016 Jun; 344(2):219-28. PubMed ID: 27163399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac mTORC1 Dysregulation Impacts Stress Adaptation and Survival in Huntington's Disease.
    Child DD; Lee JH; Pascua CJ; Chen YH; Mas Monteys A; Davidson BL
    Cell Rep; 2018 Apr; 23(4):1020-1033. PubMed ID: 29694882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Striatal Induction and Spread of the Huntington's Disease Protein: A Novel Rhes Route.
    Subramaniam S
    J Huntingtons Dis; 2022; 11(3):281-290. PubMed ID: 35871361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mammalian target of rapamycin complex I (mTORC1) activity in ras homologue enriched in brain (Rheb)-deficient mouse embryonic fibroblasts.
    Groenewoud MJ; Goorden SM; Kassies J; Pellis-van Berkel W; Lamb RF; Elgersma Y; Zwartkruis FJ
    PLoS One; 2013; 8(11):e81649. PubMed ID: 24303063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo expression of polyglutamine-expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation with Huntington's disease subjects.
    Faideau M; Kim J; Cormier K; Gilmore R; Welch M; Auregan G; Dufour N; Guillermier M; Brouillet E; Hantraye P; Déglon N; Ferrante RJ; Bonvento G
    Hum Mol Genet; 2010 Aug; 19(15):3053-67. PubMed ID: 20494921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.