These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 25556913)

  • 1. The influence of activity on axon pathfinding in the optic tectum.
    Kita EM; Scott EK; Goodhill GJ
    Dev Neurobiol; 2015 Jun; 75(6):608-20. PubMed ID: 25556913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quantitative analysis of branching, growth cone turning, and directed growth in zebrafish retinotectal axon guidance.
    Simpson HD; Kita EM; Scott EK; Goodhill GJ
    J Comp Neurol; 2013 Apr; 521(6):1409-29. PubMed ID: 23124714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zebrafish mutations affecting retinotectal axon pathfinding.
    Karlstrom RO; Trowe T; Klostermann S; Baier H; Brand M; Crawford AD; Grunewald B; Haffter P; Hoffmann H; Meyer SU; Müller BK; Richter S; van Eeden FJ; Nüsslein-Volhard C; Bonhoeffer F
    Development; 1996 Dec; 123():427-38. PubMed ID: 9007260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic activity and activity-dependent competition regulates axon arbor maturation, growth arrest, and territory in the retinotectal projection.
    Ben Fredj N; Hammond S; Otsuna H; Chien CB; Burrone J; Meyer MP
    J Neurosci; 2010 Aug; 30(32):10939-51. PubMed ID: 20702722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A POU domain transcription factor-dependent program regulates axon pathfinding in the vertebrate visual system.
    Erkman L; Yates PA; McLaughlin T; McEvilly RJ; Whisenhunt T; O'Connell SM; Krones AI; Kirby MA; Rapaport DH; Bermingham JR; O'Leary DD; Rosenfeld MG
    Neuron; 2000 Dec; 28(3):779-92. PubMed ID: 11163266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. astray, a zebrafish roundabout homolog required for retinal axon guidance.
    Fricke C; Lee JS; Geiger-Rudolph S; Bonhoeffer F; Chien CB
    Science; 2001 Apr; 292(5516):507-10. PubMed ID: 11313496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of the retinotectal projection in zebrafish embryos under TTX-induced neural-impulse blockade.
    Stuermer CA; Rohrer B; Münz H
    J Neurosci; 1990 Nov; 10(11):3615-26. PubMed ID: 2230950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pbx homeodomain proteins pattern both the zebrafish retina and tectum.
    French CR; Erickson T; Callander D; Berry KM; Koss R; Hagey DW; Stout J; Wuennenberg-Stapleton K; Ngai J; Moens CB; Waskiewicz AJ
    BMC Dev Biol; 2007 Jul; 7():85. PubMed ID: 17634100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A GFP-based genetic screen reveals mutations that disrupt the architecture of the zebrafish retinotectal projection.
    Xiao T; Roeser T; Staub W; Baier H
    Development; 2005 Jul; 132(13):2955-67. PubMed ID: 15930106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise lamination of retinal axons generates multiple parallel input pathways in the tectum.
    Robles E; Filosa A; Baier H
    J Neurosci; 2013 Mar; 33(11):5027-39. PubMed ID: 23486973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Netrin participates in the development of retinotectal synaptic connectivity by modulating axon arborization and synapse formation in the developing brain.
    Manitt C; Nikolakopoulou AM; Almario DR; Nguyen SA; Cohen-Cory S
    J Neurosci; 2009 Sep; 29(36):11065-77. PubMed ID: 19741113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic responses of Xenopus retinal ganglion cell axon growth cones to netrin-1 as they innervate their in vivo target.
    Shirkey NJ; Manitt C; Zuniga L; Cohen-Cory S
    Dev Neurobiol; 2012 Apr; 72(4):628-48. PubMed ID: 21858928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the activity-deprived zebrafish mutant macho reveals an essential requirement of neuronal activity for the development of a fine-grained visuotopic map.
    Gnuegge L; Schmid S; Neuhauss SC
    J Neurosci; 2001 May; 21(10):3542-8. PubMed ID: 11331383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of process formation during differentiation of tectal neurons in embryonic zebrafish.
    Kaethner RJ; Stuermer CA
    J Neurobiol; 1997 Jun; 32(6):627-39. PubMed ID: 9183742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinotopic order in the absence of axon competition.
    Gosse NJ; Nevin LM; Baier H
    Nature; 2008 Apr; 452(7189):892-5. PubMed ID: 18368050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BOC, brother of CDO, is a dorsoventral axon-guidance molecule in the embryonic vertebrate brain.
    Connor RM; Allen CL; Devine CA; Claxton C; Key B
    J Comp Neurol; 2005 Apr; 485(1):32-42. PubMed ID: 15776441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT; Fleming MR; Leu B
    J Neurobiol; 2004 Feb; 58(3):328-40. PubMed ID: 14750146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chondroitin sulfate disrupts axon pathfinding in the optic tract and alters growth cone dynamics.
    Walz A; Anderson RB; Irie A; Chien CB; Holt CE
    J Neurobiol; 2002 Nov; 53(3):330-42. PubMed ID: 12382261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide modulates retinal ganglion cell axon arbor remodeling in vivo.
    Cogen J; Cohen-Cory S
    J Neurobiol; 2000 Nov; 45(2):120-33. PubMed ID: 11018773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optic nerve regeneration in larval zebrafish exhibits spontaneous capacity for retinotopic but not tectum specific axon targeting.
    Harvey BM; Baxter M; Granato M
    PLoS One; 2019; 14(6):e0218667. PubMed ID: 31220164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.