BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 25556972)

  • 1. Development and application of a multimetal multibiotic ligand model for assessing aquatic toxicity of metal mixtures.
    Santore RC; Ryan AC
    Environ Toxicol Chem; 2015 Apr; 34(4):777-87. PubMed ID: 25556972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive effects of waterborne metals in binary mixtures on short-term gill-metal binding and ion uptake in rainbow trout (Oncorhynchus mykiss).
    Niyogi S; Nadella SR; Wood CM
    Aquat Toxicol; 2015 Aug; 165():109-19. PubMed ID: 26057931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Refining our understanding of metal bioavailability in sediments using information from porewater: Application of a multimetal biotic ligand model as an extension of the equilibrium partitioning sediment benchmarks.
    Santore RC; Toll JE; DeForest DK; Croteau K; Baldwin A; Bergquist B; McPeek K; Tobiason K; Judd NL
    Integr Environ Assess Manag; 2022 Sep; 18(5):1335-1347. PubMed ID: 34953029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the effects of binary metal mixtures on short-term uptake of Ag, Cu, and Ni by rainbow trout (Oncorhynchus mykiss).
    Brix KV; Tellis MS; Crémazy A; Wood CM
    Aquat Toxicol; 2016 Nov; 180():236-246. PubMed ID: 27750117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotic ligand modeling approach: Synthesis of the effect of major cations on the toxicity of metals to soil and aquatic organisms.
    Ardestani MM; van Straalen NM; van Gestel CA
    Environ Toxicol Chem; 2015 Oct; 34(10):2194-204. PubMed ID: 25953362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the effects of binary metal mixtures on short-term uptake of Cd, Pb, and Zn by rainbow trout (Oncorhynchus mykiss).
    Brix KV; Tellis MS; Crémazy A; Wood CM
    Aquat Toxicol; 2017 Dec; 193():217-227. PubMed ID: 29100104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Response predictions for organisms water-exposed to metal mixtures: a meta-analysis.
    Vijver MG; Elliott EG; Peijnenburg WJ; de Snoo GR
    Environ Toxicol Chem; 2011 Jun; 30(6):1482-7. PubMed ID: 21337610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A framework for ecological risk assessment of metal mixtures in aquatic systems.
    Nys C; Van Regenmortel T; Janssen CR; Oorts K; Smolders E; De Schamphelaere KAC
    Environ Toxicol Chem; 2018 Mar; 37(3):623-642. PubMed ID: 29135043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A test of the additivity of acute toxicity of binary-metal mixtures of ni with Cd, Cu, and Zn to Daphnia magna, using the inflection point of the concentration-response curves.
    Traudt EM; Ranville JF; Smith SA; Meyer JS
    Environ Toxicol Chem; 2016 Jul; 35(7):1843-51. PubMed ID: 26681657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An application of the biotic ligand model to predict the toxic effects of metal mixtures.
    Kamo M; Nagai T
    Environ Toxicol Chem; 2008 Jul; 27(7):1479-87. PubMed ID: 18260697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing an application of a biotic ligand model to predict acute toxicity of metal mixtures to rainbow trout.
    Iwasaki Y; Kamo M; Naito W
    Environ Toxicol Chem; 2015 Apr; 34(4):754-60. PubMed ID: 25323464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding metal mixture toxicity models to natural stream and lake invertebrate communities.
    Balistrieri LS; Mebane CA; Schmidt TS; Keller WB
    Environ Toxicol Chem; 2015 Apr; 34(4):761-76. PubMed ID: 25477294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and application of a biotic ligand model for predicting the chronic toxicity of dissolved and precipitated aluminum to aquatic organisms.
    Santore RC; Ryan AC; Kroglund F; Rodriguez PH; Stubblefield WA; Cardwell AS; Adams WJ; Nordheim E
    Environ Toxicol Chem; 2018 Jan; 37(1):70-79. PubMed ID: 29080370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioavailability of cyanide and metal-cyanide mixtures to aquatic life.
    Redman A; Santore R
    Environ Toxicol Chem; 2012 Aug; 31(8):1774-80. PubMed ID: 22653873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal mixture toxicity to aquatic biota in laboratory experiments: application of the WHAM-FTOX model.
    Tipping E; Lofts S
    Aquat Toxicol; 2013 Oct; 142-143():114-22. PubMed ID: 23994673
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal mixture modeling evaluation project: 2. Comparison of four modeling approaches.
    Farley KJ; Meyer JS; Balistrieri LS; De Schamphelaere KA; Iwasaki Y; Janssen CR; Kamo M; Lofts S; Mebane CA; Naito W; Ryan AC; Santore RC; Tipping E
    Environ Toxicol Chem; 2015 Apr; 34(4):741-53. PubMed ID: 25418584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute toxicity of binary and ternary mixtures of Cd, Cu, and Zn to Daphnia magna.
    Meyer JS; Ranville JF; Pontasch M; Gorsuch JW; Adams WJ
    Environ Toxicol Chem; 2015 Apr; 34(4):799-808. PubMed ID: 25336231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new model for predicting time course toxicity of heavy metals based on Biotic Ligand Model (BLM).
    Hatano A; Shoji R
    Comp Biochem Physiol C Toxicol Pharmacol; 2010 Jan; 151(1):25-32. PubMed ID: 19689929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal mixture modeling evaluation project: 3. Lessons learned and steps forward.
    Farley KJ; Meyer JS
    Environ Toxicol Chem; 2015 Apr; 34(4):821-32. PubMed ID: 25475765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modes of metal toxicity and impaired branchial ionoregulation in rainbow trout exposed to mixtures of Pb and Cd in soft water.
    Birceanu O; Chowdhury MJ; Gillis PL; McGeer JC; Wood CM; Wilkie MP
    Aquat Toxicol; 2008 Sep; 89(4):222-31. PubMed ID: 18774611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.