These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 25557737)

  • 1. Direct fungal fermentation of lignocellulosic biomass into itaconic, fumaric, and malic acids: current and future prospects.
    Mondala AH
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):487-506. PubMed ID: 25557737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal Fermentation of Lignocellulosic Biomass for Itaconic and Fumaric Acid Production.
    Jiménez-Quero A; Pollet E; Zhao M; Marchioni E; Averous L; Phalip V
    J Microbiol Biotechnol; 2017 Jan; 27(1):1-8. PubMed ID: 27666988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized Bioproduction of Itaconic and Fumaric Acids Based on Solid-State Fermentation of Lignocellulosic Biomass.
    Jiménez-Quero A; Pollet E; Avérous L; Phalip V
    Molecules; 2020 Feb; 25(5):. PubMed ID: 32121002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Itaconic and Fumaric Acid Production from Biomass Hydrolysates by Aspergillus Strains.
    Jiménez-Quero A; Pollet E; Zhao M; Marchioni E; Avérous L; Phalip V
    J Microbiol Biotechnol; 2016 Sep; 26(9):1557-65. PubMed ID: 27291673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consolidated bioprocessing of lignocellulosic biomass to itaconic acid by metabolically engineering Neurospora crassa.
    Zhao C; Chen S; Fang H
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9577-9584. PubMed ID: 30225531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of multifunctional organic acids from renewable resources.
    Tsao GT; Cao NJ; Du J; Gong CS
    Adv Biochem Eng Biotechnol; 1999; 65():243-80. PubMed ID: 10533437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomass pretreatment affects Ustilago maydis in producing itaconic acid.
    Klement T; Milker S; Jäger G; Grande PM; Domínguez de María P; Büchs J
    Microb Cell Fact; 2012 Apr; 11():43. PubMed ID: 22480369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective removal of lignin to enhance the process of preparing fermentable sugars and platform chemicals from lignocellulosic biomass.
    Zhang J; Wang Y; Du X; Qu Y
    Bioresour Technol; 2020 May; 303():122846. PubMed ID: 32032935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review.
    Brethauer S; Studer MH
    Chimia (Aarau); 2015; 69(10):572-81. PubMed ID: 26598400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fungal pretreatment of lignocellulosic biomass.
    Wan C; Li Y
    Biotechnol Adv; 2012; 30(6):1447-57. PubMed ID: 22433674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex effect of lignocellulosic biomass pretreatment with 1-butyl-3-methylimidazolium chloride ionic liquid on various aspects of ethanol and fumaric acid production by immobilized cells within SSF.
    Dotsenko AS; Dotsenko GS; Senko OV; Stepanov NA; Lyagin IV; Efremenko EN; Gusakov AV; Zorov IN; Rubtsova EA
    Bioresour Technol; 2018 Feb; 250():429-438. PubMed ID: 29195155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for (bio)chemicals and fuels.
    van der Pol EC; Bakker RR; Baets P; Eggink G
    Appl Microbiol Biotechnol; 2014 Dec; 98(23):9579-93. PubMed ID: 25370992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging technologies for the pretreatment of lignocellulosic materials for bio-based products.
    Ali N; Zhang Q; Liu ZY; Li FL; Lu M; Fang XC
    Appl Microbiol Biotechnol; 2020 Jan; 104(2):455-473. PubMed ID: 31686144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A PCR-based method to quantify fungal growth during pretreatment of lignocellulosic biomass.
    Simeng Z; Sacha G; Isabelle HG; Marie-Noëlle R
    J Microbiol Methods; 2015 Aug; 115():67-70. PubMed ID: 26031470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology.
    Hasunuma T; Okazaki F; Okai N; Hara KY; Ishii J; Kondo A
    Bioresour Technol; 2013 May; 135():513-22. PubMed ID: 23195654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks.
    Kawaguchi H; Hasunuma T; Ogino C; Kondo A
    Curr Opin Biotechnol; 2016 Dec; 42():30-39. PubMed ID: 26970511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethanol fermentation from biomass resources: current state and prospects.
    Lin Y; Tanaka S
    Appl Microbiol Biotechnol; 2006 Feb; 69(6):627-42. PubMed ID: 16331454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling malic acid biorefinery: Comprehensive insights into feedstocks, microbial strains, and metabolic pathways.
    Xu B; Zhang W; Zhao E; Hong J; Chen X; Wei Z; Li X
    Bioresour Technol; 2024 Feb; 394():130265. PubMed ID: 38160850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of the citric acid cycle in fungal organic acid fermentations.
    Kubicek CP
    Biochem Soc Symp; 1987; 54():113-26. PubMed ID: 3332989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Induction and regulation of cellulase expression in filamentous fungi: a review].
    Zhang F; Bai F; Zhao X
    Sheng Wu Gong Cheng Xue Bao; 2016 Nov; 32(11):1481-1495. PubMed ID: 29034619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.