These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 25558173)
1. Disease progression in iridocorneal angle tissues of BMP2-induced ocular hypertensive mice with optical coherence tomography. Li G; Farsiu S; Qiu J; Dixon A; Song C; McKinnon SJ; Yuan F; Gonzalez P; Stamer WD Mol Vis; 2014; 20():1695-709. PubMed ID: 25558173 [TBL] [Abstract][Full Text] [Related]
2. Pilocarpine-induced dilation of Schlemm's canal and prevention of lumen collapse at elevated intraocular pressures in living mice visualized by OCT. Li G; Farsiu S; Chiu SJ; Gonzalez P; Lütjen-Drecoll E; Overby DR; Stamer WD Invest Ophthalmol Vis Sci; 2014 Mar; 55(6):3737-46. PubMed ID: 24595384 [TBL] [Abstract][Full Text] [Related]
3. Autophagy in the Aging and Experimental Ocular Hypertensive Mouse Model. Nettesheim A; Dixon A; Shim MS; Coyne A; Walsh M; Liton PB Invest Ophthalmol Vis Sci; 2020 Aug; 61(10):31. PubMed ID: 32797200 [TBL] [Abstract][Full Text] [Related]
4. A laser-induced mouse model with long-term intraocular pressure elevation. Yun H; Lathrop KL; Yang E; Sun M; Kagemann L; Fu V; Stolz DB; Schuman JS; Du Y PLoS One; 2014; 9(9):e107446. PubMed ID: 25216052 [TBL] [Abstract][Full Text] [Related]
5. Development of a model of elevated intraocular pressure in rats by gene transfer of bone morphogenetic protein 2. Buie LK; Karim MZ; Smith MH; Borrás T Invest Ophthalmol Vis Sci; 2013 Aug; 54(8):5441-55. PubMed ID: 23821199 [TBL] [Abstract][Full Text] [Related]
6. Development and characterization of a chronic high intraocular pressure model in New Zealand white rabbits for glaucoma research. Shimizu S; Ochiai Y; Kamijima K; Takai N; Watanabe S; Aihara M Exp Eye Res; 2024 Aug; 245():109973. PubMed ID: 38880377 [TBL] [Abstract][Full Text] [Related]
7. Optical coherence tomography and histologic measurements of nerve fiber layer thickness in normal and glaucomatous monkey eyes. Schuman JS; Pedut-Kloizman T; Pakter H; Wang N; Guedes V; Huang L; Pieroth L; Scott W; Hee MR; Fujimoto JG; Ishikawa H; Bilonick RA; Kagemann L; Wollstein G Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3645-54. PubMed ID: 17652734 [TBL] [Abstract][Full Text] [Related]
8. [A challenge to primary open-angle glaucoma including normal-pressure. Clinical problems and their scientific solution]. Sugiyama K Nippon Ganka Gakkai Zasshi; 2012 Mar; 116(3):233-67; discussion 268. PubMed ID: 22568103 [TBL] [Abstract][Full Text] [Related]
9. Anatomical changes of the anterior chamber angle with anterior-segment optical coherence tomography. Liu L Arch Ophthalmol; 2008 Dec; 126(12):1682-6. PubMed ID: 19064849 [TBL] [Abstract][Full Text] [Related]
10. A Novel Tree Shrew (Tupaia belangeri) Model of Glaucoma. Samuels BC; Siegwart JT; Zhan W; Hethcox L; Chimento M; Whitley R; Downs JC; Girkin CA Invest Ophthalmol Vis Sci; 2018 Jun; 59(7):3136-3143. PubMed ID: 30025140 [TBL] [Abstract][Full Text] [Related]
11. Effect of acute intraocular pressure elevation on the minimum rim width in normal, ocular hypertensive and glaucoma eyes. Sharma S; Tun TA; Baskaran M; Atalay E; Thakku SG; Liang Z; Milea D; Strouthidis NG; Aung T; Girard MJ Br J Ophthalmol; 2018 Jan; 102(1):131-135. PubMed ID: 28490427 [TBL] [Abstract][Full Text] [Related]
12. Anterior Chamber Angle and Intraocular Pressure Changes After Phacoemulsification: A Comparison Between Eyes With Closed-angle and Open-angle Glaucoma. Siak J; Quek D; Nongpiur ME; Ho SW; Htoon HM; Perera S; Aung T; Wong T J Glaucoma; 2016 Mar; 25(3):e259-64. PubMed ID: 25943732 [TBL] [Abstract][Full Text] [Related]
13. The Effect of Age on Increasing Susceptibility to Retinal Nerve Fiber Layer Loss in Glaucoma. Jammal AA; Berchuck SI; Thompson AC; Costa VP; Medeiros FA Invest Ophthalmol Vis Sci; 2020 Nov; 61(13):8. PubMed ID: 33151281 [TBL] [Abstract][Full Text] [Related]
14. Mutant human myocilin induces strain specific differences in ocular hypertension and optic nerve damage in mice. McDowell CM; Luan T; Zhang Z; Putliwala T; Wordinger RJ; Millar JC; John SW; Pang IH; Clark AF Exp Eye Res; 2012 Jul; 100():65-72. PubMed ID: 22575566 [TBL] [Abstract][Full Text] [Related]
15. Microbead-induced ocular hypertensive mouse model for screening and testing of aqueous production suppressants for glaucoma. Yang Q; Cho KS; Chen H; Yu D; Wang WH; Luo G; Pang IH; Guo W; Chen DF Invest Ophthalmol Vis Sci; 2012 Jun; 53(7):3733-41. PubMed ID: 22599582 [TBL] [Abstract][Full Text] [Related]
16. Anterior chamber depth, iridocorneal angle width, and intraocular pressure changes after phacoemulsification: narrow vs open iridocorneal angles. Huang G; Gonzalez E; Peng PH; Lee R; Leeungurasatien T; He M; Porco T; Lin SC Arch Ophthalmol; 2011 Oct; 129(10):1283-90. PubMed ID: 21987670 [TBL] [Abstract][Full Text] [Related]
17. Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension. Trost A; Motloch K; Bruckner D; Schroedl F; Bogner B; Kaser-Eichberger A; Runge C; Strohmaier C; Klein B; Aigner L; Reitsamer HA Exp Eye Res; 2015 Jul; 136():59-71. PubMed ID: 26001526 [TBL] [Abstract][Full Text] [Related]
18. Optic neuropathy due to microbead-induced elevated intraocular pressure in the mouse. Chen H; Wei X; Cho KS; Chen G; Sappington R; Calkins DJ; Chen DF Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):36-44. PubMed ID: 20702815 [TBL] [Abstract][Full Text] [Related]