BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 25558792)

  • 1. Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5: Oxidation of Mn(II) and polymeric lignin by Dyp1B.
    Rahmanpour R; Bugg TD
    Arch Biochem Biophys; 2015 May; 574():93-8. PubMed ID: 25558792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary convergence in lignin-degrading enzymes.
    Ayuso-Fernández I; Ruiz-Dueñas FJ; Martínez AT
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):6428-6433. PubMed ID: 29866821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a dye-decolorizing peroxidase from Comamonas serinivorans for lignin valorization potentials.
    Sethupathy S; Xie R; Liang N; Shafreen RMB; Ali MY; Zhuang Z; Zhe L; Zahoor ; Yong YC; Zhu D
    Int J Biol Macromol; 2023 Dec; 253(Pt 4):127117. PubMed ID: 37774822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DyP-type peroxidases comprise a novel heme peroxidase family.
    Sugano Y
    Cell Mol Life Sci; 2009 Apr; 66(8):1387-403. PubMed ID: 19099183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The oligomeric states of dye-decolorizing peroxidases from Streptomyces lividans and their implications for mechanism of substrate oxidation.
    Lučić M; Allport T; Clarke TA; Williams LJ; Wilson MT; Chaplin AK; Worrall JAR
    Protein Sci; 2024 Jul; 33(7):e5073. PubMed ID: 38864770
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lignin-oxidizing and xylan-hydrolyzing Vibrio involved in the mineralization of plant detritus in the continental slope.
    Li J; Dong C; Sen B; Lai Q; Gong L; Wang G; Shao Z
    Sci Total Environ; 2023 Jan; 854():158714. PubMed ID: 36113801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Draft genome of
    Wang X; Pan H; Zhou H; Feng Z; Li A; Guan X
    Microbiol Resour Announc; 2024 Jun; ():e0041124. PubMed ID: 38864618
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete genome sequence of the lignin-degrading bacterium Klebsiella sp. strain BRL6-2.
    Woo HL; Ballor NR; Hazen TC; Fortney JL; Simmons B; Davenport KW; Goodwin L; Ivanova N; Kyrpides NC; Mavromatis K; Woyke T; Jansson J; Kimbrel J; DeAngelis KM
    Stand Genomic Sci; 2014; 9():19. PubMed ID: 25566348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can laccases catalyze bond cleavage in lignin?
    Munk L; Sitarz AK; Kalyani DC; Mikkelsen JD; Meyer AS
    Biotechnol Adv; 2015; 33(1):13-24. PubMed ID: 25560931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The multihued palette of dye-decolorizing peroxidases.
    Singh R; Eltis LD
    Arch Biochem Biophys; 2015 May; 574():56-65. PubMed ID: 25743546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of Thermobifida fusca DyP-type peroxidase and activity towards Kraft lignin and lignin model compounds.
    Rahmanpour R; Rea D; Jamshidi S; Fülöp V; Bugg TD
    Arch Biochem Biophys; 2016 Mar; 594():54-60. PubMed ID: 26901432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A structural and functional perspective of DyP-type peroxidase family.
    Yoshida T; Sugano Y
    Arch Biochem Biophys; 2015 May; 574():49-55. PubMed ID: 25655348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independent evolution of four heme peroxidase superfamilies.
    Zámocký M; Hofbauer S; Schaffner I; Gasselhuber B; Nicolussi A; Soudi M; Pirker KF; Furtmüller PG; Obinger C
    Arch Biochem Biophys; 2015 May; 574():108-19. PubMed ID: 25575902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of
    Välimets S; Sun P; Virginia LJ; van Erven G; Sanders MG; Kabel MA; Peterbauer C
    Appl Environ Microbiol; 2024 May; 90(5):e0020524. PubMed ID: 38625022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilising Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to track the oxidation of lignin by an alkaliphilic laccase.
    Towle Z; Cruickshank F; Mackay CL; Clarke DJ; Horsfall LE
    Analyst; 2024 Apr; 149(8):2399-2411. PubMed ID: 38477231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lignin bioconversion based on genome mining for ligninolytic genes in Erwinia billingiae QL-Z3.
    Zhao S; Deng D; Wan T; Feng J; Deng L; Tian Q; Wang J; Aiman UE; Mukhaddi B; Hu X; Chen S; Qiu L; Huang L; Wei Y
    Biotechnol Biofuels Bioprod; 2024 Feb; 17(1):25. PubMed ID: 38360683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomic and metabolomic analysis reveals the influence of carbohydrates on lignin degradation mediated by
    Li X; Li Z; Li M; Li J; Wang Q; Wang S; Li S; Li H
    Front Microbiol; 2024; 15():1224855. PubMed ID: 38333584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical, Biophysical, and Structural Analysis of an Unusual DyP from the Extremophile
    Frade K; Silveira CM; Salgueiro BA; Mendes S; Martins LO; Frazão C; Todorovic S; Moe E
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial transformation of lignin: key enzymes and high-value products.
    Gu J; Qiu Q; Yu Y; Sun X; Tian K; Chang M; Wang Y; Zhang F; Huo H
    Biotechnol Biofuels Bioprod; 2024 Jan; 17(1):2. PubMed ID: 38172947
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.