These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 25558822)

  • 1. Reliability and validity of a wireless accelerometer for the assessment of postural sway.
    Saunders NW; Koutakis P; Kloos AD; Kegelmeyer DA; Dicke JD; Devor ST
    J Appl Biomech; 2015 Jun; 31(3):159-63. PubMed ID: 25558822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The development of an accelerometer-based measure of human upright static anterior- posterior postural sway under various sensory conditions: test-retest reliability, scoring and preliminary validity of the Balance Accelerometry Measure (BAM).
    Marchetti GF; Bellanca J; Whitney SL; Lin JC; Musolino MC; Furman GR; Redfern MS
    J Vestib Res; 2013; 23(4-5):227-35. PubMed ID: 24284603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing clinical measures of postural stability with wearable sensors.
    Deshmukh PM; Russell CM; Lucarino LE; Robinovitch SN
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4521-4. PubMed ID: 23366933
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validity and Reliability of a Portable Balance Tracking System, BTrackS, in Older Adults.
    Levy SS; Thralls KJ; Kviatkovsky SA
    J Geriatr Phys Ther; 2018; 41(2):102-107. PubMed ID: 27893566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Test-retest reliability of a pendant-worn sensor device in measuring chair rise performance in older persons.
    Zhang W; Regterschot GR; Schaabova H; Baldus H; Zijlstra W
    Sensors (Basel); 2014 May; 14(5):8705-17. PubMed ID: 24841248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of accelerometry with clinical balance tests in older fallers and non-fallers.
    O'Sullivan M; Blake C; Cunningham C; Boyle G; Finucane C
    Age Ageing; 2009 May; 38(3):308-13. PubMed ID: 19252205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Criterion validity and between-day reliability of an inertial-sensor-based trunk postural stability test during unstable sitting.
    Larivière C; Mecheri H; Shahvarpour A; Gagnon D; Shirazi-Adl A
    J Electromyogr Kinesiol; 2013 Aug; 23(4):899-907. PubMed ID: 23582401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validity and Reliability of Gait and Postural Control Analysis Using the Tri-axial Accelerometer of the iPod Touch.
    Kosse NM; Caljouw S; Vervoort D; Vuillerme N; Lamoth CJ
    Ann Biomed Eng; 2015 Aug; 43(8):1935-46. PubMed ID: 25549774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Test-retest reliability of sensor-based sit-to-stand measures in young and older adults.
    Regterschot GR; Zhang W; Baldus H; Stevens M; Zijlstra W
    Gait Posture; 2014; 40(1):220-4. PubMed ID: 24768083
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postural sway parameters using a triaxial accelerometer: comparing elderly and young healthy adults.
    Martinez-Mendez R; Sekine M; Tamura T
    Comput Methods Biomech Biomed Engin; 2012; 15(9):899-910. PubMed ID: 21547782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Accelerometer as an Alternative to a Force Plate for the Step-Up-and-Over Test.
    Bailey CA; Costigan PA
    J Appl Biomech; 2015 Dec; 31(6):504-6. PubMed ID: 26157105
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliability and validity of an accelerometry based measure of static and dynamic postural stability in healthy and active individuals.
    Heebner NR; Akins JS; Lephart SM; Sell TC
    Gait Posture; 2015 Feb; 41(2):535-9. PubMed ID: 25544692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peak impact accelerations during track and treadmill running.
    Bigelow EM; Elvin NG; Elvin AA; Arnoczky SP
    J Appl Biomech; 2013 Oct; 29(5):639-44. PubMed ID: 23182887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internal Consistency of Sway Measures via Embedded Head-Mounted Accelerometers: Implications for Neuromotor Investigations.
    Lapointe AP; Ritchie JN; Vitali RV; Burma JS; Soroush A; Oni I; Dunn JF
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel approach to ambulatory assessment of human segmental orientation on a wearable sensor system.
    Liu K; Liu T; Shibata K; Inoue Y; Zheng R
    J Biomech; 2009 Dec; 42(16):2747-52. PubMed ID: 19748624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of capacitive MEMS accelerometer structure parameters for human body dynamics measurements.
    Benevicius V; Ostasevicius V; Gaidys R
    Sensors (Basel); 2013 Aug; 13(9):11184-95. PubMed ID: 23974151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wearable inertial measurement unit for long-term monitoring in the dependency care area.
    Rodríguez-Martín D; Pérez-López C; Samà A; Cabestany J; Català A
    Sensors (Basel); 2013 Oct; 13(10):14079-104. PubMed ID: 24145917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wireless accelerometer node for reliable and valid measurement of lumbar accelerations during treadmill running.
    Lindsay TR; Yaggie JA; McGregor SJ
    Sports Biomech; 2016; 15(1):11-22. PubMed ID: 26836779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An accelerometry-based system for the assessment of balance and postural sway.
    Kamen G; Patten C; Du CD; Sison S
    Gerontology; 1998; 44(1):40-5. PubMed ID: 9436014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Body-worn triaxial accelerometer coherence and reliability related to static posturography in unilateral vestibular failure.
    Alessandrini M; Micarelli A; Viziano A; Pavone I; Costantini G; Casali D; Paolizzo F; Saggio G
    Acta Otorhinolaryngol Ital; 2017 Jun; 37(3):231-236. PubMed ID: 28516967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.