These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 25558834)

  • 41. Altered hepatic blood flow and drug disposition.
    Nies AS; Shand DG; Wilkinson GR
    Clin Pharmacokinet; 1976; 1(2):135-55. PubMed ID: 13954
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of fluvoxamine on tacrine metabolism in vitro: potential implication for the hepatotoxicity in vivo.
    Becquemont L; Le Bot MA; Riche C; Beaune P
    Fundam Clin Pharmacol; 1996; 10(2):156-7. PubMed ID: 8737959
    [No Abstract]   [Full Text] [Related]  

  • 43. The Extended Clearance Concept Following Oral and Intravenous Dosing: Theory and Critical Analyses.
    Benet LZ; Bowman CM; Liu S; Sodhi JK
    Pharm Res; 2018 Oct; 35(12):242. PubMed ID: 30349948
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Interaction between carbamazepine and fluvoxamine.
    Fritze J; Unsorg B; Lanczik M
    Acta Psychiatr Scand; 1991 Dec; 84(6):583-4. PubMed ID: 1792934
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A computer simulation of the food effect: transient changes in hepatic blood flow and Michaelis-Menten parameters as mediators of hepatic first pass metabolism and bioavailability of propranolol.
    Semple HA; Tam YK; Coutts RT
    Biopharm Drug Dispos; 1990; 11(1):61-76. PubMed ID: 2322637
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Elevated clozapine plasma concentrations after fluvoxamine initiation.
    DuMortier G; Lochu A; Colen de Melo P; Ghribi O; Roche-Rabreau D; DeGrassat K; Desce JM
    Am J Psychiatry; 1996 May; 153(5):738-9. PubMed ID: 8615436
    [No Abstract]   [Full Text] [Related]  

  • 47. KINI: a one compartment intravenous pharmacokinetic analysis program.
    Franck KR; Bertino JS
    Comput Methods Programs Biomed; 1994 Mar; 42(3):157-65. PubMed ID: 8062548
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Are adverse drug reactions attributed to fluvoxamine caused by concomitant intake of caffeine?
    Spigset O
    Eur J Clin Pharmacol; 1998 Oct; 54(8):665-6. PubMed ID: 9860156
    [No Abstract]   [Full Text] [Related]  

  • 49. Some Methodologic Considerations in the Assessment of Methods for Predicting Pharmacokinetic Drug-Drug Interactions.
    Noe DA
    Clin Pharmacol Drug Dev; 2017 Nov; 6(6):529-533. PubMed ID: 28741311
    [No Abstract]   [Full Text] [Related]  

  • 50. Using an in silico liver to evaluate a hepatic enzyme induction mechanism.
    Hunt C; Ropella GE
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2415-8. PubMed ID: 19163189
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Modeling and simulation of pharmacokinetic drug-drug interaction caused by induction of metabolic enzymes].
    Yamashita F
    Nihon Yakurigaku Zasshi; 2016 Feb; 147(2):95-100. PubMed ID: 26860649
    [No Abstract]   [Full Text] [Related]  

  • 52. Modeling Drug Disposition and Drug-Drug Interactions Through Hypothesis-Driven Physiologically Based Pharmacokinetics: a Reversal Translation Perspective.
    Li GF; Zheng QS
    Eur J Drug Metab Pharmacokinet; 2018 Jun; 43(3):369-371. PubMed ID: 29204788
    [No Abstract]   [Full Text] [Related]  

  • 53. Interplay of UDP-Glucuronosyltransferase and CYP2C8 for CYP2C8 Mediated Drug Oxidation and Its Impact on Drug-Drug Interaction Produced by Standardized CYP2C8 Inhibitors, Clopidogrel and Gemfibrozil.
    Iga K; Kiriyama A
    Clin Pharmacokinet; 2024 Jan; 63(1):43-56. PubMed ID: 37921907
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The impact of
    de Jong LM; Boussallami S; Sánchez-López E; Giera M; Tushuizen ME; Hoekstra M; Hawinkels LJAC; Rissmann R; Swen JJ; Manson ML
    Front Pharmacol; 2023; 14():1201906. PubMed ID: 37361233
    [No Abstract]   [Full Text] [Related]  

  • 55. Physiologically-Based Pharmacokinetic Models for CYP1A2 Drug-Drug Interaction Prediction: A Modeling Network of Fluvoxamine, Theophylline, Caffeine, Rifampicin, and Midazolam.
    Britz H; Hanke N; Volz AK; Spigset O; Schwab M; Eissing T; Wendl T; Frechen S; Lehr T
    CPT Pharmacometrics Syst Pharmacol; 2019 May; 8(5):296-307. PubMed ID: 30762305
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of three-compartment physiologically based pharmacokinetic modeling to predict hepatic blood levels of fluvoxamine relevant for drug-drug interactions.
    Iga K
    J Pharm Sci; 2015 Apr; 104(4):1478-91. PubMed ID: 25558834
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simulation of Metabolic Drug-Drug Interactions Perpetrated by Fluvoxamine Using Hybridized Two-Compartment Hepatic Drug-Pool-Based Tube Modeling and Estimation of In Vivo Inhibition Constants.
    Iga K
    J Pharm Sci; 2015 Oct; 104(10):3565-77. PubMed ID: 26099559
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic and Static Simulations of Fluvoxamine-Perpetrated Drug-Drug Interactions Using Multiple Cytochrome P450 Inhibition Modeling, and Determination of Perpetrator-Specific CYP Isoform Inhibition Constants and Fractional CYP Isoform Contributions to Victim Clearance.
    Iga K
    J Pharm Sci; 2016 Mar; 105(3):1307-17. PubMed ID: 26886336
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Semi-mechanistic physiologically-based pharmacokinetic modeling of clinical glibenclamide pharmacokinetics and drug-drug-interactions.
    Greupink R; Schreurs M; Benne MS; Huisman MT; Russel FG
    Eur J Pharm Sci; 2013 Aug; 49(5):819-28. PubMed ID: 23806476
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Clinical pharmacokinetics of fluvoxamine: applications to dosage regimen design.
    DeVane CL; Gill HS
    J Clin Psychiatry; 1997; 58 Suppl 5():7-14. PubMed ID: 9184622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.