These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

521 related articles for article (PubMed ID: 25558867)

  • 21. Use of pantothenate as a metabolic switch increases the genetic stability of farnesene producing Saccharomyces cerevisiae.
    Sandoval CM; Ayson M; Moss N; Lieu B; Jackson P; Gaucher SP; Horning T; Dahl RH; Denery JR; Abbott DA; Meadows AL
    Metab Eng; 2014 Sep; 25():215-26. PubMed ID: 25076380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Designing an Escherichia coli Strain for Phenylalanine Overproduction by Metabolic Engineering.
    Tyagi N; Saini D; Guleria R; Mukherjee KJ
    Mol Biotechnol; 2017 May; 59(4-5):168-178. PubMed ID: 28374116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of natural products through metabolic engineering of Saccharomyces cerevisiae.
    Krivoruchko A; Nielsen J
    Curr Opin Biotechnol; 2015 Dec; 35():7-15. PubMed ID: 25544013
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Yeast metabolic engineering for the production of pharmaceutically important secondary metabolites.
    Rahmat E; Kang Y
    Appl Microbiol Biotechnol; 2020 Jun; 104(11):4659-4674. PubMed ID: 32270249
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Utilization of alkaline phosphatase PhoA in the bioproduction of geraniol by metabolically engineered Escherichia coli.
    Liu W; Zhang R; Tian N; Xu X; Cao Y; Xian M; Liu H
    Bioengineered; 2015; 6(5):288-93. PubMed ID: 26091008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering modular ester fermentative pathways in Escherichia coli.
    Layton DS; Trinh CT
    Metab Eng; 2014 Nov; 26():77-88. PubMed ID: 25281839
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic engineering strategies for sesquiterpene production in microorganism.
    Liu CL; Xue K; Yang Y; Liu X; Li Y; Lee TS; Bai Z; Tan T
    Crit Rev Biotechnol; 2022 Feb; 42(1):73-92. PubMed ID: 34256675
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring optimal Taxol® CYP725A4 activity in Saccharomyces cerevisiae.
    Nowrouzi B; Lungang L; Rios-Solis L
    Microb Cell Fact; 2022 Sep; 21(1):197. PubMed ID: 36123694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Butyrate production in engineered Escherichia coli with synthetic scaffolds.
    Baek JM; Mazumdar S; Lee SW; Jung MY; Lim JH; Seo SW; Jung GY; Oh MK
    Biotechnol Bioeng; 2013 Oct; 110(10):2790-4. PubMed ID: 23568786
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.
    Hubmann G; Thevelein JM; Nevoigt E
    Methods Mol Biol; 2014; 1152():17-42. PubMed ID: 24744025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli.
    Zhu F; Zhong X; Hu M; Lu L; Deng Z; Liu T
    Biotechnol Bioeng; 2014 Jul; 111(7):1396-405. PubMed ID: 24473754
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent progress in therapeutic natural product biosynthesis using Escherichia coli.
    Ahmadi MK; Pfeifer BA
    Curr Opin Biotechnol; 2016 Dec; 42():7-12. PubMed ID: 26942861
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The De Novo Synthesis of 2-Phenylethanol from Glucose by the Synthetic Microbial Consortium Composed of Engineered
    Yan W; Gao H; Jiang W; Jiang Y; Lin CSK; Zhang W; Xin F; Jiang M
    ACS Synth Biol; 2022 Dec; 11(12):4018-4030. PubMed ID: 36368021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of targeted proteomics to metabolically engineered Escherichia coli.
    Singh P; Batth TS; Juminaga D; Dahl RH; Keasling JD; Adams PD; Petzold CJ
    Proteomics; 2012 Apr; 12(8):1289-99. PubMed ID: 22577029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Advance in producing higher alcohols by microbial cell factories].
    Liu Z; Zhang G
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1421-30. PubMed ID: 24432657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering microbial consortia by division of labor.
    Roell GW; Zha J; Carr RR; Koffas MA; Fong SS; Tang YJ
    Microb Cell Fact; 2019 Feb; 18(1):35. PubMed ID: 30736778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A molecular toolkit of cross-feeding strains for engineering synthetic yeast communities.
    Peng H; Darlington APS; South EJ; Chen HH; Jiang W; Ledesma-Amaro R
    Nat Microbiol; 2024 Mar; 9(3):848-863. PubMed ID: 38326570
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic engineering of the Stevia rebaudiana ent-kaurene biosynthetic pathway in recombinant Escherichia coli.
    Kong MK; Kang HJ; Kim JH; Oh SH; Lee PC
    J Biotechnol; 2015 Nov; 214():95-102. PubMed ID: 26392384
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineered Microbial Consortium for
    Tang D; Zheng X; Zhao Y; Zhang C; Chen C; Chen Y; Du L; Liu K; Li S
    J Agric Food Chem; 2024 Sep; 72(36):19977-19984. PubMed ID: 39213654
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae.
    Dejong JM; Liu Y; Bollon AP; Long RM; Jennewein S; Williams D; Croteau RB
    Biotechnol Bioeng; 2006 Feb; 93(2):212-24. PubMed ID: 16161138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.