BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25558883)

  • 1. Measurement and modeling of CO₂ solubility in natural and synthetic formation brines for CO₂ sequestration.
    Zhao H; Dilmore R; Allen DE; Hedges SW; Soong Y; Lvov SN
    Environ Sci Technol; 2015 Feb; 49(3):1972-80. PubMed ID: 25558883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sequestration of dissolved CO2 in the Oriskany formation.
    Dilmore RM; Allen DE; Jones JR; Hedges SW; Soong Y
    Environ Sci Technol; 2008 Apr; 42(8):2760-6. PubMed ID: 18497120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative permeability experiments of carbon dioxide displacing brine and their implications for carbon sequestration.
    Levine JS; Goldberg DS; Lackner KS; Matter JM; Supp MG; Ramakrishnan TS
    Environ Sci Technol; 2014; 48(1):811-8. PubMed ID: 24274391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volumetrics of CO2 storage in deep saline formations.
    Steele-MacInnis M; Capobianco RM; Dilmore R; Goodman A; Guthrie G; Rimstidt JD; Bodnar RJ
    Environ Sci Technol; 2013 Jan; 47(1):79-86. PubMed ID: 22916959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na+, Ca2+, and Mg2+ in brines affect supercritical CO2-brine-biotite interactions: ion exchange, biotite dissolution, and illite precipitation.
    Hu Y; Ray JR; Jun YS
    Environ Sci Technol; 2013 Jan; 47(1):191-7. PubMed ID: 22607371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement and Modeling of Setschenow Constants for Selected Hydrophilic Compounds in NaCl and CaCl
    Burant A; Lowry GV; Karamalidis AK
    Acc Chem Res; 2017 Jun; 50(6):1332-1341. PubMed ID: 28586208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular dynamics simulations of CO2 and brine interfacial tension at high temperatures and pressures.
    Li X; Ross DA; Trusler JP; Maitland GC; Boek ES
    J Phys Chem B; 2013 May; 117(18):5647-52. PubMed ID: 23537183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of Setschenow constants for six hydrophobic compounds in simulated brines and use in predictive modeling for oil and gas systems.
    Burant A; Lowry GV; Karamalidis AK
    Chemosphere; 2016 Feb; 144():2247-56. PubMed ID: 26598993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics computations of brine-CO2 interfacial tensions and brine-CO2-quartz contact angles and their effects on structural and residual trapping mechanisms in carbon geo-sequestration.
    Iglauer S; Mathew MS; Bresme F
    J Colloid Interface Sci; 2012 Nov; 386(1):405-14. PubMed ID: 22921540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactivity of Mount Simon sandstone and the Eau Claire shale under CO2 storage conditions.
    Carroll SA; McNab WW; Dai Z; Torres SC
    Environ Sci Technol; 2013 Jan; 47(1):252-61. PubMed ID: 22873684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wettability phenomena at the CO2-brine-mineral interface: implications for geologic carbon sequestration.
    Wang S; Edwards IM; Clarens AF
    Environ Sci Technol; 2013 Jan; 47(1):234-41. PubMed ID: 22857395
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissolution potential of SO2 Co-injected with CO2 in geologic sequestration.
    Crandell LE; Ellis BR; Peters CA
    Environ Sci Technol; 2010 Jan; 44(1):349-55. PubMed ID: 20000315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional assessment of CO2-solubility trapping potential: a case study of the coastal and offshore Texas Miocene interval.
    Yang C; Treviño RH; Zhang T; Romanak KD; Wallace K; Lu J; Mickler PJ; Hovorka SD
    Environ Sci Technol; 2014 Jul; 48(14):8275-82. PubMed ID: 24956931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular simulations of carbon dioxide and water: cation solvation.
    Criscenti LJ; Cygan RT
    Environ Sci Technol; 2013 Jan; 47(1):87-94. PubMed ID: 22779448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting possible effects of H2S impurity on CO2 transportation and geological storage.
    Ji X; Zhu C
    Environ Sci Technol; 2013 Jan; 47(1):55-62. PubMed ID: 22823266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotite dissolution in brine at varied temperatures and CO2 pressures: its activation energy and potential CO2 intercalation.
    Hu Y; Jun YS
    Langmuir; 2012 Oct; 28(41):14633-41. PubMed ID: 22989382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Estimating CO
    Zou X; Zhu Y; Lv J; Zhou Y; Ding B; Liu W; Xiao K; Zhang Q
    ACS Omega; 2024 Jan; 9(4):4705-4720. PubMed ID: 38313487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Residual CO2 trapping in Indiana limestone.
    El-Maghraby RM; Blunt MJ
    Environ Sci Technol; 2013 Jan; 47(1):227-33. PubMed ID: 23167314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimodel predictive system for carbon dioxide solubility in saline formation waters.
    Wang Z; Small MJ; Karamalidis AK
    Environ Sci Technol; 2013 Feb; 47(3):1407-15. PubMed ID: 23253153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capillary pressure-saturation relations for supercritical CO2 and brine in limestone/dolomite sands: implications for geologic carbon sequestration in carbonate reservoirs.
    Wang S; Tokunaga TK
    Environ Sci Technol; 2015 Jun; 49(12):7208-17. PubMed ID: 25945400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.