These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25558989)

  • 1. Optofluidic approaches for enhanced microsensor performances.
    Testa G; Persichetti G; Bernini R
    Sensors (Basel); 2014 Dec; 15(1):465-84. PubMed ID: 25558989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optofluidic devices and applications in photonics, sensing and imaging.
    Pang L; Chen HM; Freeman LM; Fainman Y
    Lab Chip; 2012 Oct; 12(19):3543-51. PubMed ID: 22810383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optofluidic bioanalysis: fundamentals and applications.
    Ozcelik D; Cai H; Leake KD; Hawkins AR; Schmidt H
    Nanophotonics; 2017 Jul; 6(4):647-661. PubMed ID: 29201591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Liquid Core ARROW Waveguides: A Promising Photonic Structure for Integrated Optofluidic Microsensors.
    Testa G; Persichetti G; Bernini R
    Micromachines (Basel); 2016 Mar; 7(3):. PubMed ID: 30407419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing.
    Zuo Y; Zhu X; Shi Y; Liang L; Yang Y
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Developments in Optofluidic Lens Technology.
    Mishra K; van den Ende D; Mugele F
    Micromachines (Basel); 2016 Jun; 7(6):. PubMed ID: 30404276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frontiers of optofluidics in synthetic biology.
    Tan C; Lo SJ; LeDuc PR; Cheng CM
    Lab Chip; 2012 Oct; 12(19):3654-65. PubMed ID: 22895798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optofluidic Tweezers: Efficient and Versatile Micro/Nano-Manipulation Tools.
    Zhu Y; You M; Shi Y; Huang H; Wei Z; He T; Xiong S; Wang Z; Cheng X
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrowetting-driven solar indoor lighting (e-SIL): an optofluidic approach towards sustainable buildings.
    Thio SK; Jiang D; Park SY
    Lab Chip; 2018 Jun; 18(12):1725-1735. PubMed ID: 29726880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optofluidic devices with integrated solid-state nanopores.
    Liu S; Hawkins AR; Schmidt H
    Mikrochim Acta; 2016 Apr; 183(4):1275-1287. PubMed ID: 27046940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing optofluidic technology through the fusion of microfluidics and optics.
    Psaltis D; Quake SR; Yang C
    Nature; 2006 Jul; 442(7101):381-6. PubMed ID: 16871205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-/Nanofiber Optics: Merging Photonics and Material Science on Nanoscale for Advanced Sensing Technology.
    Zhang L; Tang Y; Tong L
    iScience; 2020 Jan; 23(1):100810. PubMed ID: 31931430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optofluidics Refractometers.
    Li C; Bai G; Zhang Y; Zhang M; Jian A
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metasurface optofluidics for dynamic control of light fields.
    Li Q; van de Groep J; White AK; Song JH; Longwell SA; Fordyce PM; Quake SR; Kik PG; Brongersma ML
    Nat Nanotechnol; 2022 Oct; 17(10):1097-1103. PubMed ID: 36163507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new generation of sensors based on extraordinary optical transmission.
    Gordon R; Sinton D; Kavanagh KL; Brolo AG
    Acc Chem Res; 2008 Aug; 41(8):1049-57. PubMed ID: 18605739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-free detection with micro optical fluidic systems (MOFS): a review.
    Liu AQ; Huang HJ; Chin LK; Yu YF; Li XC
    Anal Bioanal Chem; 2008 Aug; 391(7):2443-52. PubMed ID: 18286269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis.
    Surdo S; Merlo S; Carpignano F; Strambini LM; Trono C; Giannetti A; Baldini F; Barillaro G
    Lab Chip; 2012 Nov; 12(21):4403-15. PubMed ID: 22930245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation optofluidics for large-angle light bending and tuning.
    Yang Y; Chin LK; Tsai JM; Tsai DP; Zheludev NI; Liu AQ
    Lab Chip; 2012 Oct; 12(19):3785-90. PubMed ID: 22868356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light driven optofluidic switch developed in a ZnO-overlaid microstructured optical fiber.
    Konidakis I; Konstantaki M; Tsibidis GD; Pissadakis S
    Opt Express; 2015 Nov; 23(24):31496-509. PubMed ID: 26698774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging optofluidic technologies for point-of-care genetic analysis systems: a review.
    Brennan D; Justice J; Corbett B; McCarthy T; Galvin P
    Anal Bioanal Chem; 2009 Oct; 395(3):621-36. PubMed ID: 19455313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.