These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25558989)

  • 21. Autonomous and In Situ Ocean Environmental Monitoring on Optofluidic Platform.
    Wang F; Zhu J; Chen L; Zuo Y; Hu X; Yang Y
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31936398
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lab-on-fiber technology: a new vision for chemical and biological sensing.
    Ricciardi A; Crescitelli A; Vaiano P; Quero G; Consales M; Pisco M; Esposito E; Cusano A
    Analyst; 2015 Dec; 140(24):8068-79. PubMed ID: 26514109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent advances in integrated photonic sensors.
    Passaro VM; de Tullio C; Troia B; La Notte M; Giannoccaro G; De Leonardis F
    Sensors (Basel); 2012 Nov; 12(11):15558-98. PubMed ID: 23202223
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Low Cost Photonic Sensor for in-Line Oil Quality Monitoring: Methodological Development Process towards Uncertainty Mitigation.
    Lopez P; Mabe J; Miró G; Etxeberria L
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29932444
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers.
    Vieweg M; Gissibl T; Pricking S; Kuhlmey BT; Wu DC; Eggleton BJ; Giessen H
    Opt Express; 2010 Nov; 18(24):25232-40. PubMed ID: 21164870
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Joining plasmonics with microfluidics: from convenience to inevitability.
    Kim J
    Lab Chip; 2012 Oct; 12(19):3611-23. PubMed ID: 22858903
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variable optofluidic slit aperture.
    Schuhladen S; Banerjee K; Stürmer M; Müller P; Wallrabe U; Zappe H
    Light Sci Appl; 2016 Jan; 5(1):e16005. PubMed ID: 30167111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanomanipulation using near field photonics.
    Erickson D; Serey X; Chen YF; Mandal S
    Lab Chip; 2011 Mar; 11(6):995-1009. PubMed ID: 21243158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical-assisted femtosecond laser writing of lab-in-fibers.
    Haque M; Lee KK; Ho S; Fernandes LA; Herman PR
    Lab Chip; 2014 Oct; 14(19):3817-29. PubMed ID: 25120138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optofluidic variable optical path modulator.
    Wang QH; Xiao L; Liu C; Li L
    Sci Rep; 2019 May; 9(1):7082. PubMed ID: 31068638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optofluidic opportunities in global health, food, water and energy.
    Chen YF; Jiang L; Mancuso M; Jain A; Oncescu V; Erickson D
    Nanoscale; 2012 Aug; 4(16):4839-57. PubMed ID: 22763418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optofluidic Microsystems for Chemical and Biological Analysis.
    Fan X; White IM
    Nat Photonics; 2011 Oct; 5(10):591-597. PubMed ID: 22059090
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photonic crystal fibres for chemical sensing and photochemistry.
    Cubillas AM; Unterkofler S; Euser TG; Etzold BJ; Jones AC; Sadler PJ; Wasserscheid P; Russell PS
    Chem Soc Rev; 2013 Nov; 42(22):8629-48. PubMed ID: 23753016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new approach to gas sensing with nanotechnology.
    Sharma S; Madou M
    Philos Trans A Math Phys Eng Sci; 2012 May; 370(1967):2448-73. PubMed ID: 22509066
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lensfree optofluidic microscopy and tomography.
    Bishara W; Isikman SO; Ozcan A
    Ann Biomed Eng; 2012 Feb; 40(2):251-62. PubMed ID: 21887590
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optofluidics incorporating actively controlled micro- and nano-particles.
    Kayani AA; Khoshmanesh K; Ward SA; Mitchell A; Kalantar-Zadeh K
    Biomicrofluidics; 2012 Sep; 6(3):31501. PubMed ID: 23864925
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Roadmap on optical sensors.
    Ferreira MFS; Brambilla G; Thévenaz L; Feng X; Zhang L; Sumetsky M; Jones C; Pedireddy S; Vollmer F; Dragic PD; Henderson-Sapir O; Ottaway DJ; Strupiechonski E; Hernandez-Cardoso GG; Hernandez-Serrano AI; González FJ; Castro Camus E; Méndez A; Saccomandi P; Quan Q; Xie Z; Reinhard BM; Diem M
    J Opt; 2024 Jan; 26(1):013001. PubMed ID: 38116399
    [TBL] [Abstract][Full Text] [Related]  

  • 38. All-in-fiber optofluidic sensor fabricated by femtosecond laser assisted chemical etching.
    Yuan L; Huang J; Lan X; Wang H; Jiang L; Xiao H
    Opt Lett; 2014 Apr; 39(8):2358-61. PubMed ID: 24978992
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gold nanoparticle incorporated inverse opal photonic crystal capillaries for optofluidic surface enhanced Raman spectroscopy.
    Zhao X; Xue J; Mu Z; Huang Y; Lu M; Gu Z
    Biosens Bioelectron; 2015 Oct; 72():268-74. PubMed ID: 25988995
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Color tunable pressure sensors based on polymer nanostructured membranes for optofluidic applications.
    Escudero P; Yeste J; Pascual-Izarra C; Villa R; Alvarez M
    Sci Rep; 2019 Mar; 9(1):3259. PubMed ID: 30824807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.