These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Biosensors and bioelectronics on smartphone for portable biochemical detection. Zhang D; Liu Q Biosens Bioelectron; 2016 Jan; 75():273-84. PubMed ID: 26319170 [TBL] [Abstract][Full Text] [Related]
43. Optofluidic variable-focus lenses for light manipulation. Seow YC; Lim SP; Lee HP Lab Chip; 2012 Oct; 12(19):3810-5. PubMed ID: 22885654 [TBL] [Abstract][Full Text] [Related]
44. Photonic Low Cost Micro-Sensor for in-Line Wear Particle Detection in Flowing Lube Oils. Mabe J; Zubia J; Gorritxategi E Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28335436 [TBL] [Abstract][Full Text] [Related]
45. Photonic nanowires: from subwavelength waveguides to optical sensors. Guo X; Ying Y; Tong L Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258 [TBL] [Abstract][Full Text] [Related]
46. Dual characterization of biological cells by optofluidic microscope and resistive pulse sensor. Guo J; Chen L; Huang X; Li CM; Ai Y; Kang Y Electrophoresis; 2015 Feb; 36(3):420-3. PubMed ID: 25088789 [TBL] [Abstract][Full Text] [Related]
47. Optofluidics 2013. Liu AQ; Yang C Lab Chip; 2013 Jul; 13(14):2673-4. PubMed ID: 23719899 [TBL] [Abstract][Full Text] [Related]
48. Versatile optofluidic ring resonator lasers based on microdroplets. Lee W; Luo Y; Zhu Q; Fan X Opt Express; 2011 Sep; 19(20):19668-74. PubMed ID: 21996908 [TBL] [Abstract][Full Text] [Related]
49. Opto-fluidics based microscopy and flow cytometry on a cell phone for blood analysis. Zhu H; Ozcan A Methods Mol Biol; 2015; 1256():171-90. PubMed ID: 25626539 [TBL] [Abstract][Full Text] [Related]
51. Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection. Huang NT; Zhang HL; Chung MT; Seo JH; Kurabayashi K Lab Chip; 2014 Apr; 14(7):1230-45. PubMed ID: 24525555 [TBL] [Abstract][Full Text] [Related]
52. Optofluidic platforms based on surface-enhanced Raman scattering. Lim C; Hong J; Chung BG; deMello AJ; Choo J Analyst; 2010 May; 135(5):837-44. PubMed ID: 20419230 [TBL] [Abstract][Full Text] [Related]
53. Elastomeric 2D grating and hemispherical optofluidic chamber for multifunctional fluidic sensing. Xu Z; Wang X; Han K; Li S; Liu GL J Opt Soc Am A Opt Image Sci Vis; 2013 Dec; 30(12):2466-72. PubMed ID: 24323007 [TBL] [Abstract][Full Text] [Related]
54. Optofluidic lasers and their applications in biochemical sensing. Zhang H; Zhang YN; Li L; Hu J; Li X; Zhao Y Lab Chip; 2023 Jun; 23(13):2959-2989. PubMed ID: 37293879 [TBL] [Abstract][Full Text] [Related]
55. Low-cost fabrication technologies for nanostructures: state-of-the-art and potential. Santos A; Deen MJ; Marsal LF Nanotechnology; 2015 Jan; 26(4):042001. PubMed ID: 25567484 [TBL] [Abstract][Full Text] [Related]
56. Design and numerical simulation of an optofluidic pressure sensor. Ebnali-Heidari M; Mansouri M; Mokhtarian S; Moravvej-Farshi MK Appl Opt; 2012 Jun; 51(16):3387-96. PubMed ID: 22695574 [TBL] [Abstract][Full Text] [Related]
57. Optofluidic encapsulation and manipulation of silicon microchips using image processing based optofluidic maskless lithography and railed microfluidics. Chung SE; Lee SA; Kim J; Kwon S Lab Chip; 2009 Oct; 9(19):2845-50. PubMed ID: 19967123 [TBL] [Abstract][Full Text] [Related]
58. Insect-Human Hybrid Eye (IHHE): an adaptive optofluidic lens combining the structural characteristics of insect and human eyes. Wei K; Zeng H; Zhao Y Lab Chip; 2014 Sep; 14(18):3594-602. PubMed ID: 25067810 [TBL] [Abstract][Full Text] [Related]