BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 25559055)

  • 1. Can a mathematical model predict an individual's trait-like response to both total and partial sleep loss?
    Ramakrishnan S; Lu W; Laxminarayan S; Wesensten NJ; Rupp TL; Balkin TJ; Reifman J
    J Sleep Res; 2015 Jun; 24(3):262-9. PubMed ID: 25559055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unified mathematical model to quantify performance impairment for both chronic sleep restriction and total sleep deprivation.
    Rajdev P; Thorsley D; Rajaraman S; Rupp TL; Wesensten NJ; Balkin TJ; Reifman J
    J Theor Biol; 2013 Aug; 331():66-77. PubMed ID: 23623949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Unified Model of Performance: Validation of its Predictions across Different Sleep/Wake Schedules.
    Ramakrishnan S; Wesensten NJ; Balkin TJ; Reifman J
    Sleep; 2016 Jan; 39(1):249-62. PubMed ID: 26518594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time individualization of the unified model of performance.
    Liu J; Ramakrishnan S; Laxminarayan S; Balkin TJ; Reifman J
    J Sleep Res; 2017 Dec; 26(6):820-831. PubMed ID: 28436072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trait-like vulnerability to total and partial sleep loss.
    Rupp TL; Wesensten NJ; Balkin TJ
    Sleep; 2012 Aug; 35(8):1163-72. PubMed ID: 22851812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Unified Model of Performance for Predicting the Effects of Sleep and Caffeine.
    Ramakrishnan S; Wesensten NJ; Kamimori GH; Moon JE; Balkin TJ; Reifman J
    Sleep; 2016 Oct; 39(10):1827-1841. PubMed ID: 27397562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individualized performance prediction of sleep-deprived individuals with the two-process model.
    Rajaraman S; Gribok AV; Wesensten NJ; Balkin TJ; Reifman J
    J Appl Physiol (1985); 2008 Feb; 104(2):459-68. PubMed ID: 18079260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Individualized performance prediction during total sleep deprivation: accounting for trait vulnerability to sleep loss.
    Ramakrishnan S; Laxminarayan S; Thorsley D; Wesensten NJ; Balkin TJ; Reifman J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5574-7. PubMed ID: 23367192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Psychomotor vigilance task performance during and following chronic sleep restriction in rats.
    Deurveilher S; Bush JE; Rusak B; Eskes GA; Semba K
    Sleep; 2015 Apr; 38(4):515-28. PubMed ID: 25515100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust stability of trait-like vulnerability or resilience to common types of sleep deprivation in a large sample of adults.
    Yamazaki EM; Goel N
    Sleep; 2020 Jun; 43(6):. PubMed ID: 31784748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic interindividual differences in neurobehavioral impairment from sleep loss: evidence of trait-like differential vulnerability.
    Van Dongen HP; Baynard MD; Maislin G; Dinges DF
    Sleep; 2004 May; 27(3):423-33. PubMed ID: 15164894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2B-Alert App: A mobile application for real-time individualized prediction of alertness.
    Reifman J; Ramakrishnan S; Liu J; Kapela A; Doty TJ; Balkin TJ; Kumar K; Khitrov MY
    J Sleep Res; 2019 Apr; 28(2):e12725. PubMed ID: 30033688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognitive impairments by alcohol and sleep deprivation indicate trait characteristics and a potential role for adenosine A
    Elmenhorst EM; Elmenhorst D; Benderoth S; Kroll T; Bauer A; Aeschbach D
    Proc Natl Acad Sci U S A; 2018 Jul; 115(31):8009-8014. PubMed ID: 30012607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dose-dependent model of caffeine effects on human vigilance during total sleep deprivation.
    Ramakrishnan S; Laxminarayan S; Wesensten NJ; Kamimori GH; Balkin TJ; Reifman J
    J Theor Biol; 2014 Oct; 358():11-24. PubMed ID: 24859426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved methodology for individualized performance prediction of sleep-deprived individuals with the two-process model.
    Rajaraman S; Gribok AV; Wesensten NJ; Balkin TJ; Reifman J
    Sleep; 2009 Oct; 32(10):1377-92. PubMed ID: 19848366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of split sleep schedules (6h-on/6h-off) on neurobehavioural performance, sleep and sleepiness.
    Short MA; Centofanti S; Hilditch C; Banks S; Lushington K; Dorrian J
    Appl Ergon; 2016 May; 54():72-82. PubMed ID: 26851466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustained attention performance during sleep deprivation: evidence of state instability.
    Doran SM; Van Dongen HP; Dinges DF
    Arch Ital Biol; 2001 Apr; 139(3):253-67. PubMed ID: 11330205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraindividual Increase of Homeostatic Sleep Pressure Across Acute and Chronic Sleep Loss: A High-Density EEG Study.
    Maric A; Lustenberger C; Werth E; Baumann CR; Poryazova R; Huber R
    Sleep; 2017 Sep; 40(9):. PubMed ID: 28934530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new mathematical model for the homeostatic effects of sleep loss on neurobehavioral performance.
    McCauley P; Kalachev LV; Smith AD; Belenky G; Dinges DF; Van Dongen HP
    J Theor Biol; 2009 Jan; 256(2):227-39. PubMed ID: 18938181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of the unified model of performance: accuracy of group-average and individualised alertness predictions.
    Priezjev NV; Vital-Lopez FG; Reifman J
    J Sleep Res; 2023 Apr; 32(2):e13626. PubMed ID: 35521938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.