BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25559055)

  • 21. Healthy Adults Display Long-Term Trait-Like Neurobehavioral Resilience and Vulnerability to Sleep Loss.
    Dennis LE; Wohl RJ; Selame LA; Goel N
    Sci Rep; 2017 Nov; 7(1):14889. PubMed ID: 29097703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational cognitive modeling of the temporal dynamics of fatigue from sleep loss.
    Walsh MM; Gunzelmann G; Van Dongen HPA
    Psychon Bull Rev; 2017 Dec; 24(6):1785-1807. PubMed ID: 28210999
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mismatch between subjective alertness and objective performance under sleep restriction is greatest during the biological night.
    Zhou X; Ferguson SA; Matthews RW; Sargent C; Darwent D; Kennaway DJ; Roach GD
    J Sleep Res; 2012 Feb; 21(1):40-9. PubMed ID: 21564364
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat.
    Stephenson R; Caron AM; Famina S
    Sleep; 2015 May; 38(5):685-97. PubMed ID: 25669184
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An ensemble mixed effects model of sleep loss and performance.
    Cochrane C; Ba D; Klerman EB; St Hilaire MA
    J Theor Biol; 2021 Jan; 509():110497. PubMed ID: 32966825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predicting individual differences in response to sleep loss: application of current techniques.
    Chandler JF; Arnold RD; Phillips JB; Turnmire AE
    Aviat Space Environ Med; 2013 Sep; 84(9):927-37. PubMed ID: 24024304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new likelihood ratio metric for the psychomotor vigilance test and its sensitivity to sleep loss.
    Basner M; Mcguire S; Goel N; Rao H; Dinges DF
    J Sleep Res; 2015 Dec; 24(6):702-13. PubMed ID: 26118830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A biomathematical model of the restoring effects of caffeine on cognitive performance during sleep deprivation.
    Ramakrishnan S; Rajaraman S; Laxminarayan S; Wesensten NJ; Kamimori GH; Balkin TJ; Reifman J
    J Theor Biol; 2013 Feb; 319():23-33. PubMed ID: 23182694
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sleep deprivation and time-on-task performance decrement in the rat psychomotor vigilance task.
    Oonk M; Davis CJ; Krueger JM; Wisor JP; Van Dongen HP
    Sleep; 2015 Mar; 38(3):445-51. PubMed ID: 25515099
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sleep, circadian rhythms, and psychomotor vigilance.
    Van Dongen HP; Dinges DF
    Clin Sports Med; 2005 Apr; 24(2):237-49, vii-viii. PubMed ID: 15892921
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The trait of Introversion-Extraversion predicts vulnerability to sleep deprivation.
    Killgore WD; Richards JM; Killgore DB; Kamimori GH; Balkin TJ
    J Sleep Res; 2007 Dec; 16(4):354-63. PubMed ID: 18036080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dealing with inter-individual differences in the temporal dynamics of fatigue and performance: importance and techniques.
    Van Dongen HP; Maislin G; Dinges DF
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A147-54. PubMed ID: 15018277
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-awakening improves alertness in the morning and during the day after partial sleep deprivation.
    Ikeda H; Kubo T; Kuriyama K; Takahashi M
    J Sleep Res; 2014 Dec; 23(6):673-680. PubMed ID: 25130898
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulating the homeostatic process to predict performance during chronic sleep restriction.
    Johnson ML; Belenky G; Redmond DP; Thorne DR; Williams JD; Hursh SR; Balkin TJ
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A141-6. PubMed ID: 15018276
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increased Automaticity and Altered Temporal Preparation Following Sleep Deprivation.
    Kong D; Asplund CL; Ling A; Chee MW
    Sleep; 2015 Aug; 38(8):1219-27. PubMed ID: 25845689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance Trends During Sleep Deprivation on a Tilt-Based Control Task.
    Bolkhovsky JB; Ritter FE; Chon KH; Qin M
    Aerosp Med Hum Perform; 2018 Jul; 89(7):626-633. PubMed ID: 29921354
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Psychomotor vigilance performance predicted by Epworth Sleepiness Scale scores in an operational setting with the United States Navy.
    Shattuck NL; Matsangas P
    J Sleep Res; 2015 Apr; 24(2):174-80. PubMed ID: 25273376
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Procedural performance following sleep deprivation remains impaired despite extended practice and an afternoon nap.
    Kurniawan IT; Cousins JN; Chong PL; Chee MW
    Sci Rep; 2016 Oct; 6():36001. PubMed ID: 27782172
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Subjective perceptions of the effects of sustained performance under sleep-deprivation conditions.
    Odle-Dusseau HN; Bradley JL; Pilcher JJ
    Chronobiol Int; 2010 Jan; 27(2):318-33. PubMed ID: 20370472
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human performance under sustained operations and acute sleep deprivation conditions: toward a model of controlled attention.
    Pilcher JJ; Band D; Odle-Dusseau HN; Muth ER
    Aviat Space Environ Med; 2007 May; 78(5 Suppl):B15-24. PubMed ID: 17547301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.