BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 25559055)

  • 41. Alcohol and sleep restriction combined reduces vigilant attention, whereas sleep restriction alone enhances distractibility.
    Lee J; Manousakis J; Fielding J; Anderson C
    Sleep; 2015 May; 38(5):765-75. PubMed ID: 25515101
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Topographic electroencephalogram changes associated with psychomotor vigilance task performance after sleep deprivation.
    Gorgoni M; Ferlazzo F; Ferrara M; Moroni F; D'Atri A; Fanelli S; Gizzi Torriglia I; Lauri G; Marzano C; Rossini PM; De Gennaro L
    Sleep Med; 2014 Sep; 15(9):1132-9. PubMed ID: 25087194
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Language performance under sustained work and sleep deprivation conditions.
    Pilcher JJ; McClelland LE; Moore DD; Haarmann H; Baron J; Wallsten TS; McCubbin JA
    Aviat Space Environ Med; 2007 May; 78(5 Suppl):B25-38. PubMed ID: 17547302
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sleep ability mediates individual differences in the vulnerability to sleep loss: evidence from a PER3 polymorphism.
    Maire M; Reichert CF; Gabel V; Viola AU; Strobel W; Krebs J; Landolt HP; Bachmann V; Cajochen C; Schmidt C
    Cortex; 2014 Mar; 52():47-59. PubMed ID: 24439663
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The sensitivity of a PDA-based psychomotor vigilance task to sleep restriction in 10-year-old girls.
    Peters JD; Biggs SN; Bauer KM; Lushington K; Kennedy D; Martin J; Dorrian J
    J Sleep Res; 2009 Jun; 18(2):173-7. PubMed ID: 19645963
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mood, alertness, and performance in response to sleep deprivation and recovery sleep in experienced shiftworkers versus non-shiftworkers.
    Wehrens SM; Hampton SM; Kerkhofs M; Skene DJ
    Chronobiol Int; 2012 Jun; 29(5):537-48. PubMed ID: 22621349
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Physiological arousal and attention during a week of continuous sleep restriction.
    Cote KA; Milner CE; Osip SL; Baker ML; Cuthbert BP
    Physiol Behav; 2008 Oct; 95(3):353-64. PubMed ID: 18655799
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sleep Extension before Sleep Loss: Effects on Performance and Neuromuscular Function.
    Arnal PJ; Lapole T; Erblang M; Guillard M; Bourrilhon C; Léger D; Chennaoui M; Millet GY
    Med Sci Sports Exerc; 2016 Aug; 48(8):1595-603. PubMed ID: 27015382
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Insights into behavioral vulnerability to differential sleep pressure and circadian phase from a functional ADA polymorphism.
    Reichert CF; Maire M; Gabel V; Viola AU; Kolodyazhniy V; Strobel W; Götz T; Bachmann V; Landolt HP; Cajochen C; Schmidt C
    J Biol Rhythms; 2014 Apr; 29(2):119-30. PubMed ID: 24682206
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Behavioral and physiological consequences of sleep restriction.
    Banks S; Dinges DF
    J Clin Sleep Med; 2007 Aug; 3(5):519-28. PubMed ID: 17803017
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of a split sleep-wake schedule on neurobehavioural performance and predictions of performance under conditions of forced desynchrony.
    Kosmadopoulos A; Sargent C; Darwent D; Zhou X; Dawson D; Roach GD
    Chronobiol Int; 2014 Dec; 31(10):1209-17. PubMed ID: 25222348
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparing sleep-loss sleepiness and sleep inertia: lapses make the difference.
    Miccoli L; Versace F; Koterle S; Cavallero C
    Chronobiol Int; 2008 Sep; 25(5):725-44. PubMed ID: 18780200
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Neurobehavioral Effects and Biomarkers of Sleep Loss in Healthy Adults.
    Goel N
    Curr Neurol Neurosci Rep; 2017 Sep; 17(11):89. PubMed ID: 28944399
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Baseline odor identification ability predicts degradation of psychomotor vigilance during 77 hours of sleep deprivation.
    Killgore WD; McBride SA; Killgore DB; Balkin TJ; Kamimori GH
    Int J Neurosci; 2008 Sep; 118(9):1207-25. PubMed ID: 18698505
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The efficacy of objective and subjective predictors of driving performance during sleep restriction and circadian misalignment.
    Kosmadopoulos A; Sargent C; Zhou X; Darwent D; Matthews RW; Dawson D; Roach GD
    Accid Anal Prev; 2017 Feb; 99(Pt B):445-451. PubMed ID: 26534845
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Critical research issues in development of biomathematical models of fatigue and performance.
    Dinges DF
    Aviat Space Environ Med; 2004 Mar; 75(3 Suppl):A181-91. PubMed ID: 15018283
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impaired inhibition after total sleep deprivation using an antisaccade task when controlling for circadian modulation of performance.
    Bocca ML; Marie S; Chavoix C
    Physiol Behav; 2014 Jan; 124():123-8. PubMed ID: 24211236
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sleep loss and sleepiness: current issues.
    Balkin TJ; Rupp T; Picchioni D; Wesensten NJ
    Chest; 2008 Sep; 134(3):653-660. PubMed ID: 18779203
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of increased homeostatic sleep pressure on postural control and their modulation by attentional resources.
    Robillard R; Prince F; Boissonneault M; Filipini D; Carrier J
    Clin Neurophysiol; 2011 Sep; 122(9):1771-8. PubMed ID: 21396885
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The utility of automated measures of ocular metrics for detecting driver drowsiness during extended wakefulness.
    Jackson ML; Kennedy GA; Clarke C; Gullo M; Swann P; Downey LA; Hayley AC; Pierce RJ; Howard ME
    Accid Anal Prev; 2016 Feb; 87():127-33. PubMed ID: 26687538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.