These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 25559055)

  • 61. Sleep restriction for the duration of a work week impairs multitasking performance.
    Haavisto ML; Porkka-Heiskanen T; Hublin C; Härmä M; Mutanen P; Müller K; Virkkala J; Sallinen M
    J Sleep Res; 2010 Sep; 19(3):444-54. PubMed ID: 20408942
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Machine Learning Models for the Classification of Sleep Deprivation Induced Performance Impairment During a Psychomotor Vigilance Task Using Indices of Eye and Face Tracking.
    Daley MS; Gever D; Posada-Quintero HF; Kong Y; Chon K; Bolkhovsky JB
    Front Artif Intell; 2020; 3():17. PubMed ID: 33733136
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Individualisation method of biomathematical model of fatigue for predicting individual performance in mild and irregular sleep deprivation.
    Fu J; Ma L
    Ergonomics; 2023 Sep; 66(9):1310-1324. PubMed ID: 36369843
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Trait Anxiety Does Not Predict the Anxiogenic Response to Sleep Deprivation.
    Sundelin T; Holding BC
    Front Behav Neurosci; 2022; 16():880641. PubMed ID: 35910682
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Further Evidence That Sleep Deprivation Effects and the Vigilance Decrement Are Functionally Equivalent: Comment on Altmann (2018).
    Gunzelmann G; Veksler B
    Cogn Sci; 2018 Mar; 42(2):712-717. PubMed ID: 29349828
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Sleep-immune system interaction: advantages and challenges of human sleep loss model.
    Manzar MD; Hussain ME
    Front Neurol; 2012; 3():2. PubMed ID: 22291681
    [No Abstract]   [Full Text] [Related]  

  • 67. A Unified Model of Performance: Validation of its Predictions across Different Sleep/Wake Schedules.
    Ramakrishnan S; Wesensten NJ; Balkin TJ; Reifman J
    Sleep; 2016 Jan; 39(1):249-62. PubMed ID: 26518594
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Neurophysiological effects of sleep deprivation in healthy adults, a pilot study.
    Klumpers UM; Veltman DJ; van Tol MJ; Kloet RW; Boellaard R; Lammertsma AA; Hoogendijk WJ
    PLoS One; 2015; 10(1):e0116906. PubMed ID: 25608023
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Cortical waste clearance in normal and restricted sleep with potential runaway tau buildup in Alzheimer's disease.
    Tekieh T; Robinson PA; Postnova S
    Sci Rep; 2022 Aug; 12(1):13740. PubMed ID: 35961995
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The 3-Minute Psychomotor Vigilance Test Demonstrates Inadequate Convergent Validity Relative to the 10-Minute Psychomotor Vigilance Test Across Sleep Loss and Recovery.
    Antler CA; Yamazaki EM; Casale CE; Brieva TE; Goel N
    Front Neurosci; 2022; 16():815697. PubMed ID: 35242006
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Personalized sleep-wake patterns aligned with circadian rhythm relieve daytime sleepiness.
    Hong J; Choi SJ; Park SH; Hong H; Booth V; Joo EY; Kim JK
    iScience; 2021 Oct; 24(10):103129. PubMed ID: 34622173
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Recent advances in modeling sleep: from the clinic to society and disease.
    Abel JH; Lecamwasam K; Hilaire MAS; Klerman EB
    Curr Opin Physiol; 2020 Jun; 15():37-46. PubMed ID: 34485783
    [TBL] [Abstract][Full Text] [Related]  

  • 73. An ensemble mixed effects model of sleep loss and performance.
    Cochrane C; Ba D; Klerman EB; St Hilaire MA
    J Theor Biol; 2021 Jan; 509():110497. PubMed ID: 32966825
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Robust stability of trait-like vulnerability or resilience to common types of sleep deprivation in a large sample of adults.
    Yamazaki EM; Goel N
    Sleep; 2020 Jun; 43(6):. PubMed ID: 31784748
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Using a Single Daytime Performance Test to Identify Most Individuals at High-Risk for Performance Impairment during Extended Wake.
    St Hilaire MA; Kristal BS; Rahman SA; Sullivan JP; Quackenbush J; Duffy JF; Barger LK; Gooley JJ; Czeisler CA; Lockley SW
    Sci Rep; 2019 Nov; 9(1):16681. PubMed ID: 31723161
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of Sleep Deprivation on Surgeons Dexterity.
    Banfi T; Coletto E; d'Ascanio P; Dario P; Menciassi A; Faraguna U; Ciuti G
    Front Neurol; 2019; 10():595. PubMed ID: 31244758
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Trait-like vulnerability of higher-order cognition and ability to maintain wakefulness during combined sleep restriction and circadian misalignment.
    Sprecher KE; Ritchie HK; Burke TM; Depner CM; Smits AN; Dorrestein PC; Fleshner M; Knight R; Lowry CA; Turek FW; Vitaterna MH; Wright KP
    Sleep; 2019 Aug; 42(8):. PubMed ID: 31070769
    [TBL] [Abstract][Full Text] [Related]  

  • 78. 2B-Alert App: A mobile application for real-time individualized prediction of alertness.
    Reifman J; Ramakrishnan S; Liu J; Kapela A; Doty TJ; Balkin TJ; Kumar K; Khitrov MY
    J Sleep Res; 2019 Apr; 28(2):e12725. PubMed ID: 30033688
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Modeling the adenosine system as a modulator of cognitive performance and sleep patterns during sleep restriction and recovery.
    Phillips AJK; Klerman EB; Butler JP
    PLoS Comput Biol; 2017 Oct; 13(10):e1005759. PubMed ID: 29073206
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Improved Mental Acuity Forecasting with an Individualized Quantitative Sleep Model.
    Winslow BD; Nguyen N; Venta KE
    Front Neurol; 2017; 8():160. PubMed ID: 28487671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.