These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 25559112)

  • 1. Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy.
    Li Q; Jesse S; Tselev A; Collins L; Yu P; Kravchenko I; Kalinin SV; Balke N
    ACS Nano; 2015 Feb; 9(2):1848-57. PubMed ID: 25559112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrocatalysis-induced elasticity modulation in a superionic proton conductor probed by band-excitation atomic force microscopy.
    Papandrew AB; Li Q; Okatan MB; Jesse S; Hartnett C; Kalinin SV; Vasudevan RK
    Nanoscale; 2015 Dec; 7(47):20089-94. PubMed ID: 26568116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Visualization of the Nanomechanical Young's Modulus of Soft Materials by Atomic Force Microscopy.
    Kim S; Lee Y; Lee M; An S; Cho SJ
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34204454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation.
    Kocun M; Labuda A; Gannepalli A; Proksch R
    Rev Sci Instrum; 2015 Aug; 86(8):083706. PubMed ID: 26329202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contact-resonance atomic force microscopy for nanoscale elastic property measurements: Spectroscopy and imaging.
    Stan G; Krylyuk S; Davydov AV; Vaudin MD; Bendersky LA; Cook RF
    Ultramicroscopy; 2009 Jul; 109(8):929-36. PubMed ID: 19361926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the elastic properties of granular Au films by contact resonance atomic force microscopy.
    Stan G; Cook RF
    Nanotechnology; 2008 Jun; 19(23):235701. PubMed ID: 21825800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale elasticity mappings of micro-constituents of abalone shell by band excitation-contact resonance force microscopy.
    Li T; Zeng K
    Nanoscale; 2014 Feb; 6(4):2177-85. PubMed ID: 24366486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Band excitation in scanning probe microscopy: recognition and functional imaging.
    Jesse S; Vasudevan RK; Collins L; Strelcov E; Okatan MB; Belianinov A; Baddorf AP; Proksch R; Kalinin SV
    Annu Rev Phys Chem; 2014; 65():519-36. PubMed ID: 24689800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual resonance excitation system for the contact mode of atomic force microscopy.
    Kopycinska-Müller M; Striegler A; Schlegel R; Kuzeyeva N; Köhler B; Wolter KJ
    Rev Sci Instrum; 2012 Apr; 83(4):043703. PubMed ID: 22559535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy.
    Nikiforov MP; Jesse S; Morozovska AN; Eliseev EA; Germinario LT; Kalinin SV
    Nanotechnology; 2009 Sep; 20(39):395709. PubMed ID: 19726838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale mapping of contact stiffness and damping by contact resonance atomic force microscopy.
    Stan G; King SW; Cook RF
    Nanotechnology; 2012 Jun; 23(21):215703. PubMed ID: 22551825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring the size dependence of Young's modulus using force modulation atomic force microscopy.
    Price WJ; Leigh SA; Hsu SM; Patten TE; Liu GY
    J Phys Chem A; 2006 Feb; 110(4):1382-8. PubMed ID: 16435798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AFM-IR: combining atomic force microscopy and infrared spectroscopy for nanoscale chemical characterization.
    Dazzi A; Prater CB; Hu Q; Chase DB; Rabolt JF; Marcott C
    Appl Spectrosc; 2012 Dec; 66(12):1365-84. PubMed ID: 23231899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retrofitting an atomic force microscope with photothermal excitation for a clean cantilever response in low Q environments.
    Labuda A; Kobayashi K; Miyahara Y; Grütter P
    Rev Sci Instrum; 2012 May; 83(5):053703. PubMed ID: 22667621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic force microscopy studies on the nanomechanical properties of Saccharomyces cerevisiae.
    Arfsten J; Leupold S; Bradtmöller C; Kampen I; Kwade A
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):284-90. PubMed ID: 20452756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition.
    Li Q; Cao Y; Yu P; Vasudevan RK; Laanait N; Tselev A; Xue F; Chen LQ; Maksymovych P; Kalinin SV; Balke N
    Nat Commun; 2015 Nov; 6():8985. PubMed ID: 26597483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous Nanomechanical and Electrochemical Mapping: Combining Peak Force Tapping Atomic Force Microscopy with Scanning Electrochemical Microscopy.
    Knittel P; Mizaikoff B; Kranz C
    Anal Chem; 2016 Jun; 88(12):6174-8. PubMed ID: 27203837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanocarbon-scanning probe microscopy synergy: fundamental aspects to nanoscale devices.
    Kurra N; Reifenberger RG; Kulkarni GU
    ACS Appl Mater Interfaces; 2014 May; 6(9):6147-63. PubMed ID: 24697666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resolving the Subsurface Structure and Elastic Modulus of Layered Films via Contact Resonance Atomic Force Microscopy.
    Stan G; Ciobanu CV; King SW
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):55238-55248. PubMed ID: 36455132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.