These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 25559138)

  • 1. Electronic transport regimes through an alkoxythiolated diphenyl-2,2'-bithiophene-based molecular junction diodes: critical assessment of the thermal dependence.
    Pace G; Caranzi L; Bucella SG; Canesi EV; Dell'Erba G; Bertarelli C; Caironi M
    Nanoscale; 2015 Feb; 7(5):2076-84. PubMed ID: 25559138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition from Strong to Weak Electronic Coupling in a Single-Molecule Junction.
    Frisenda R; van der Zant HS
    Phys Rev Lett; 2016 Sep; 117(12):126804. PubMed ID: 27689291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced hopping conductivity in low band gap donor-acceptor molecular wires Up to 20 nm in length.
    Choi SH; Frisbie CD
    J Am Chem Soc; 2010 Nov; 132(45):16191-201. PubMed ID: 20973532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge Transport in 4 nm Molecular Wires with Interrupted Conjugation: Combined Experimental and Computational Evidence for Thermally Assisted Polaron Tunneling.
    Taherinia D; Smith CE; Ghosh S; Odoh SO; Balhorn L; Gagliardi L; Cramer CJ; Frisbie CD
    ACS Nano; 2016 Apr; 10(4):4372-83. PubMed ID: 27017971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular tunnel junctions based on π-conjugated oligoacene thiols and dithiols between Ag, Au, and Pt contacts: effect of surface linking group and metal work function.
    Kim B; Choi SH; Zhu XY; Frisbie CD
    J Am Chem Soc; 2011 Dec; 133(49):19864-77. PubMed ID: 22017173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental and Theoretical Analysis of Nanotransport in Oligophenylene Dithiol Junctions as a Function of Molecular Length and Contact Work Function.
    Xie Z; Bâldea I; Smith CE; Wu Y; Frisbie CD
    ACS Nano; 2015 Aug; 9(8):8022-36. PubMed ID: 26190402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Transport through a Single Conjugated Rigid Molecule, a Mechanical Break Junction Study.
    Frisenda R; Stefani D; van der Zant HSJ
    Acc Chem Res; 2018 Jun; 51(6):1359-1367. PubMed ID: 29862817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure Controlled Long-Range Sequential Tunneling in Carbon-Based Molecular Junctions.
    Morteza Najarian A; McCreery RL
    ACS Nano; 2017 Apr; 11(4):3542-3552. PubMed ID: 28238263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of voltage-dependent electronic transport across amine-linked single-molecular-wire junctions.
    Widawsky JR; Kamenetska M; Klare J; Nuckolls C; Steigerwald ML; Hybertsen MS; Venkataraman L
    Nanotechnology; 2009 Oct; 20(43):434009. PubMed ID: 19801764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic transport in benzodifuran single-molecule transistors.
    Xiang A; Li H; Chen S; Liu SX; Decurtins S; Bai M; Hou S; Liao J
    Nanoscale; 2015 May; 7(17):7665-73. PubMed ID: 25833315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron transport and redox reactions in carbon-based molecular electronic junctions.
    McCreery RL; Wu J; Kalakodimi RP
    Phys Chem Chem Phys; 2006 Jun; 8(22):2572-90. PubMed ID: 16738711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformations and charge transport characteristics of biphenyldithiol self-assembled-monolayer molecular electronic devices: a multiscale computational study.
    Kim YH; Jang SS; Goddard WA
    J Chem Phys; 2005 Jun; 122(24):244703. PubMed ID: 16035789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single Molecule Nanoelectrochemistry in Electrical Junctions.
    Nichols RJ; Higgins SJ
    Acc Chem Res; 2016 Nov; 49(11):2640-2648. PubMed ID: 27714992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermally Activated Tunneling Transition in a Photoswitchable Single-Molecule Electrical Junction.
    Xin N; Jia C; Wang J; Wang S; Li M; Gong Y; Zhang G; Zhu D; Guo X
    J Phys Chem Lett; 2017 Jul; 8(13):2849-2854. PubMed ID: 28598631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Length-Dependent Nanotransport and Charge Hopping Bottlenecks in Long Thiophene-Containing π-Conjugated Molecular Wires.
    Smith CE; Odoh SO; Ghosh S; Gagliardi L; Cramer CJ; Frisbie CD
    J Am Chem Soc; 2015 Dec; 137(50):15732-41. PubMed ID: 26575438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Work function and temperature dependence of electron tunneling through an N-type perylene diimide molecular junction with isocyanide surface linkers.
    Smith CE; Xie Z; Bâldea I; Frisbie CD
    Nanoscale; 2018 Jan; 10(3):964-975. PubMed ID: 29192925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transport properties of a biphenyl-based molecular junction system-the electrode metal dependence.
    Kondo H; Nara J; Kino H; Ohno T
    J Phys Condens Matter; 2009 Feb; 21(6):064220. PubMed ID: 21715922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arrays of high quality SAM-based junctions and their application in molecular diode based logic.
    Wan A; Suchand Sangeeth CS; Wang L; Yuan L; Jiang L; Nijhuis CA
    Nanoscale; 2015 Dec; 7(46):19547-56. PubMed ID: 26537895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition from tunneling to hopping in single molecular junctions by measuring length and temperature dependence.
    Hines T; Diez-Perez I; Hihath J; Liu H; Wang ZS; Zhao J; Zhou G; Müllen K; Tao N
    J Am Chem Soc; 2010 Aug; 132(33):11658-64. PubMed ID: 20669945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.