BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 25559176)

  • 1. Predicting equilibrium vapour pressure isotope effects by using artificial neural networks or multi-linear regression - A quantitative structure property relationship approach.
    Parinet J; Julien M; Nun P; Robins RJ; Remaud G; Höhener P
    Chemosphere; 2015 Sep; 134():521-7. PubMed ID: 25559176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between Multi-Linear- and Radial-Basis-Function-Neural-Network-Based QSPR Models for The Prediction of The Critical Temperature, Critical Pressure and Acentric Factor of Organic Compounds.
    Banchero M; Manna L
    Molecules; 2018 Jun; 23(6):. PubMed ID: 29880730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds.
    Ventura C; Latino DA; Martins F
    Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSPR estimation models of normal boiling point and relative liquid density of pure hydrocarbons using MLR and MLP-ANN methods.
    Roubehie Fissa M; Lahiouel Y; Khaouane L; Hanini S
    J Mol Graph Model; 2019 Mar; 87():109-120. PubMed ID: 30537641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of Henry's Law Constants via group-specific quantitative structure property relationships.
    O'Loughlin DR; English NJ
    Chemosphere; 2015 May; 127():1-9. PubMed ID: 25602194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides.
    Goodarzi M; Coelho Ldos S; Honarparvar B; Ortiz EV; Duchowicz PR
    Ecotoxicol Environ Saf; 2016 Jun; 128():52-60. PubMed ID: 26890190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wavelet neural network modeling in QSPR for prediction of solubility of 25 anthraquinone dyes at different temperatures and pressures in supercritical carbon dioxide.
    Tabaraki R; Khayamian T; Ensafi AA
    J Mol Graph Model; 2006 Sep; 25(1):46-54. PubMed ID: 16337156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative structure-property relationship modelling of the degradability rate constant of alkenes by OH radicals in atmosphere.
    Fatemi MH; Baher E
    SAR QSAR Environ Res; 2009; 20(1-2):77-90. PubMed ID: 19343584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QSPR study of Setschenow constants of organic compounds using MLR, ANN, and SVM analyses.
    Xu J; Wang L; Wang L; Shen X; Xu W
    J Comput Chem; 2011 Nov; 32(15):3241-52. PubMed ID: 21837634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSPR studies of impact sensitivity of nitro energetic compounds using three-dimensional descriptors.
    Xu J; Zhu L; Fang D; Wang L; Xiao S; Liu L; Xu W
    J Mol Graph Model; 2012 Jun; 36():10-9. PubMed ID: 22503858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of gas-to-olive oil partition coefficients of organic compounds using an artificial neural network.
    Golmohammadi H; Konoz E; Dashtbozorgi Z
    Anal Sci; 2009 Sep; 25(9):1137-42. PubMed ID: 19745543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QSPR modeling of soil sorption coefficients (K(OC)) of pesticides using SPA-ANN and SPA-MLR.
    Goudarzi N; Goodarzi M; Araujo MC; Galvão RK
    J Agric Food Chem; 2009 Aug; 57(15):7153-8. PubMed ID: 19722589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmarking of linear and nonlinear approaches for quantitative structure-property relationship studies of metal complexation with ionophores.
    Tetko IV; Solov'ev VP; Antonov AV; Yao X; Doucet JP; Fan B; Hoonakker F; Fourches D; Jost P; Lachiche N; Varnek A
    J Chem Inf Model; 2006; 46(2):808-19. PubMed ID: 16563012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative structure-property relationship studies for predicting flash points of alkanes using group bond contribution method with back-propagation neural network.
    Pan Y; Jiang J; Wang Z
    J Hazard Mater; 2007 Aug; 147(1-2):424-30. PubMed ID: 17292543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of polar surface area of drug molecules: a QSPR approach.
    Noorizadeh H; Farmany A; Noorizadeh M; Kohzadi M
    Drug Test Anal; 2013 Apr; 5(4):222-7. PubMed ID: 21539000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting the vapour pressure of chemicals from structure: a comparison of graph theoretic versus quantum chemical descriptors.
    Basak SC; Mills D
    SAR QSAR Environ Res; 2009; 20(1-2):119-32. PubMed ID: 19343587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of QSPR-ANN models for the estimation of critical properties of pure hydrocarbons.
    Roubehie Fissa M; Lahiouel Y; Khaouane L; Hanini S
    J Mol Graph Model; 2023 Jun; 121():108450. PubMed ID: 36907016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global and local QSPR models to predict supercooled vapour pressure for organic compounds.
    Maadani H; Salahinejad M; Ghasemi JB
    SAR QSAR Environ Res; 2015 Dec; 26(12):1033-1045. PubMed ID: 26649975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring QSPR models for predicting PUF-air partition coefficients of organic compounds with linear and nonlinear approaches.
    Zhu T; Gu L; Chen M; Sun F
    Chemosphere; 2021 Mar; 266():128962. PubMed ID: 33218721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of auto-ignition temperatures of hydrocarbons by neural network based on atom-type electrotopological-state indices.
    Pan Y; Jiang J; Wang R; Cao H; Zhao J
    J Hazard Mater; 2008 Sep; 157(2-3):510-7. PubMed ID: 18280036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.