These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 25559190)
1. Female protection from slow-pressor effects of angiotensin II involves prevention of ROS production independent of NMDA receptor trafficking in hypothalamic neurons expressing angiotensin 1A receptors. Marques-Lopes J; Lynch MK; Van Kempen TA; Waters EM; Wang G; Iadecola C; Pickel VM; Milner TA Synapse; 2015 Mar; 69(3):148-65. PubMed ID: 25559190 [TBL] [Abstract][Full Text] [Related]
2. Slow-pressor angiotensin II hypertension and concomitant dendritic NMDA receptor trafficking in estrogen receptor β-containing neurons of the mouse hypothalamic paraventricular nucleus are sex and age dependent. Marques-Lopes J; Van Kempen T; Waters EM; Pickel VM; Iadecola C; Milner TA J Comp Neurol; 2014 Sep; 522(13):3075-90. PubMed ID: 24639345 [TBL] [Abstract][Full Text] [Related]
3. Sex differences in NMDA GluN1 plasticity in rostral ventrolateral medulla neurons containing corticotropin-releasing factor type 1 receptor following slow-pressor angiotensin II hypertension. Van Kempen TA; Dodos M; Woods C; Marques-Lopes J; Justice NJ; Iadecola C; Pickel VM; Glass MJ; Milner TA Neuroscience; 2015 Oct; 307():83-97. PubMed ID: 26306872 [TBL] [Abstract][Full Text] [Related]
4. Redistribution of NMDA Receptors in Estrogen-Receptor-β-Containing Paraventricular Hypothalamic Neurons following Slow-Pressor Angiotensin II Hypertension in Female Mice with Accelerated Ovarian Failure. Marques-Lopes J; Tesfaye E; Israilov S; Van Kempen TA; Wang G; Glass MJ; Pickel VM; Iadecola C; Waters EM; Milner TA Neuroendocrinology; 2017; 104(3):239-256. PubMed ID: 27078860 [TBL] [Abstract][Full Text] [Related]
5. Membrane trafficking of NADPH oxidase p47(phox) in paraventricular hypothalamic neurons parallels local free radical production in angiotensin II slow-pressor hypertension. Coleman CG; Wang G; Faraco G; Marques Lopes J; Waters EM; Milner TA; Iadecola C; Pickel VM J Neurosci; 2013 Mar; 33(10):4308-16. PubMed ID: 23467347 [TBL] [Abstract][Full Text] [Related]
6. Plasma Membrane Affiliated AMPA GluA1 in Estrogen Receptor β-containing Paraventricular Hypothalamic Neurons Increases Following Hypertension in a Mouse Model of Post-menopause. Ovalles AC; Contoreggi NH; Marques-Lopes J; Van Kempen TA; Iadecola C; Waters EM; Glass MJ; Milner TA Neuroscience; 2019 Dec; 423():192-205. PubMed ID: 31682817 [TBL] [Abstract][Full Text] [Related]
7. NMDA Receptor Plasticity in the Hypothalamic Paraventricular Nucleus Contributes to the Elevated Blood Pressure Produced by Angiotensin II. Glass MJ; Wang G; Coleman CG; Chan J; Ogorodnik E; Van Kempen TA; Milner TA; Butler SD; Young CN; Davisson RL; Iadecola C; Pickel VM J Neurosci; 2015 Jul; 35(26):9558-67. PubMed ID: 26134639 [TBL] [Abstract][Full Text] [Related]
8. Angiotensin II slow-pressor hypertension enhances NMDA currents and NOX2-dependent superoxide production in hypothalamic paraventricular neurons. Wang G; Coleman CG; Chan J; Faraco G; Marques-Lopes J; Milner TA; Guruju MR; Anrather J; Davisson RL; Iadecola C; Pickel VM Am J Physiol Regul Integr Comp Physiol; 2013 Jun; 304(12):R1096-106. PubMed ID: 23576605 [TBL] [Abstract][Full Text] [Related]
9. Alterations in the subcellular distribution of NADPH oxidase p47(phox) in hypothalamic paraventricular neurons following slow-pressor angiotensin II hypertension in female mice with accelerated ovarian failure. Van Kempen TA; Narayan A; Waters EM; Marques-Lopes J; Iadecola C; Glass MJ; Pickel VM; Milner TA J Comp Neurol; 2016 Aug; 524(11):2251-65. PubMed ID: 26659944 [TBL] [Abstract][Full Text] [Related]
10. Mineralocorticoid and angiotensin II type 1 receptors in the subfornical organ mediate angiotensin II - induced hypothalamic reactive oxygen species and hypertension. Wang HW; Huang BS; White RA; Chen A; Ahmad M; Leenen FH Neuroscience; 2016 Aug; 329():112-21. PubMed ID: 27163380 [TBL] [Abstract][Full Text] [Related]
11. Estrogen receptor beta activity contributes to both tumor necrosis factor alpha expression in the hypothalamic paraventricular nucleus and the resistance to hypertension following angiotensin II in female mice. Woods C; Contoreggi NH; Johnson MA; Milner TA; Wang G; Glass MJ Neurochem Int; 2022 Dec; 161():105420. PubMed ID: 36170907 [TBL] [Abstract][Full Text] [Related]
12. Angiotensin II Type 1a Receptors in the Subfornical Organ Modulate Neuroinflammation in the Hypothalamic Paraventricular Nucleus in Heart Failure Rats. Yu Y; Wei SG; Weiss RM; Felder RB Neuroscience; 2018 Jun; 381():46-58. PubMed ID: 29684507 [TBL] [Abstract][Full Text] [Related]
13. Distribution of angiotensin type 1a receptor-containing cells in the brains of bacterial artificial chromosome transgenic mice. Gonzalez AD; Wang G; Waters EM; Gonzales KL; Speth RC; Van Kempen TA; Marques-Lopes J; Young CN; Butler SD; Davisson RL; Iadecola C; Pickel VM; Pierce JP; Milner TA Neuroscience; 2012 Dec; 226():489-509. PubMed ID: 22922351 [TBL] [Abstract][Full Text] [Related]
14. An Angiotensin-Responsive Connection from the Lamina Terminalis to the Paraventricular Nucleus of the Hypothalamus Evokes Vasopressin Secretion to Increase Blood Pressure in Mice. Frazier CJ; Harden SW; Alleyne AR; Mohammed M; Sheng W; Smith JA; Elsaafien K; Spector EA; Johnson DN; Scott KA; Krause EG; de Kloet AD J Neurosci; 2021 Feb; 41(7):1429-1442. PubMed ID: 33328294 [TBL] [Abstract][Full Text] [Related]
15. Tumor Necrosis Factor α Receptor Type 1 Activation in the Hypothalamic Paraventricular Nucleus Contributes to Glutamate Signaling and Angiotensin II-Dependent Hypertension. Woods C; Marques-Lopes J; Contoreggi NH; Milner TA; Pickel VM; Wang G; Glass MJ J Neurosci; 2021 Feb; 41(6):1349-1362. PubMed ID: 33303682 [TBL] [Abstract][Full Text] [Related]
16. Transient exposure of neonatal female mice to testosterone abrogates the sexual dimorphism of abdominal aortic aneurysms. Zhang X; Thatcher SE; Rateri DL; Bruemmer D; Charnigo R; Daugherty A; Cassis LA Circ Res; 2012 May; 110(11):e73-85. PubMed ID: 22539767 [TBL] [Abstract][Full Text] [Related]
17. Angiotensin II type 2 receptors have a major somatodendritic distribution in vasopressin-containing neurons in the mouse hypothalamic paraventricular nucleus. Coleman CG; Anrather J; Iadecola C; Pickel VM Neuroscience; 2009 Sep; 163(1):129-42. PubMed ID: 19539723 [TBL] [Abstract][Full Text] [Related]
18. α2δ-1 Is Essential for Sympathetic Output and NMDA Receptor Activity Potentiated by Angiotensin II in the Hypothalamus. Ma H; Chen SR; Chen H; Li L; Li DP; Zhou JJ; Pan HL J Neurosci; 2018 Jul; 38(28):6388-6398. PubMed ID: 29921713 [TBL] [Abstract][Full Text] [Related]
19. Angiotensin II Infusion Results in Both Hypertension and Increased AMPA GluA1 Signaling in Hypothalamic Paraventricular Nucleus of Male but not Female Mice. Wang G; Woods C; Johnson MA; Milner TA; Glass MJ Neuroscience; 2022 Mar; 485():129-144. PubMed ID: 34999197 [TBL] [Abstract][Full Text] [Related]
20. Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus. Biancardi VC; Stranahan AM; Krause EG; de Kloet AD; Stern JE Am J Physiol Heart Circ Physiol; 2016 Feb; 310(3):H404-15. PubMed ID: 26637556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]