BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

410 related articles for article (PubMed ID: 25559499)

  • 21. A computational "genome walk" technique to identify regulatory interactions in gene networks.
    Wagner A
    Pac Symp Biocomput; 1998; ():264-78. PubMed ID: 9697188
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dissociation rate compensation mechanism for budding yeast pioneer transcription factors.
    Donovan BT; Chen H; Jipa C; Bai L; Poirier MG
    Elife; 2019 Mar; 8():. PubMed ID: 30888317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcription factor regulatory modules provide the molecular mechanisms for functional redundancy observed among transcription factors in yeast.
    Yang TH
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):630. PubMed ID: 31881824
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High resolution models of transcription factor-DNA affinities improve in vitro and in vivo binding predictions.
    Agius P; Arvey A; Chang W; Noble WS; Leslie C
    PLoS Comput Biol; 2010 Sep; 6(9):. PubMed ID: 20838582
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting transcription factor synergism.
    Hannenhalli S; Levy S
    Nucleic Acids Res; 2002 Oct; 30(19):4278-84. PubMed ID: 12364607
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cross-Cell-Type Prediction of TF-Binding Site by Integrating Convolutional Neural Network and Adversarial Network.
    Lan G; Zhou J; Xu R; Lu Q; Wang H
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31336830
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computational inference of transcriptional regulatory networks from expression profiling and transcription factor binding site identification.
    Haverty PM; Hansen U; Weng Z
    Nucleic Acids Res; 2004; 32(1):179-88. PubMed ID: 14704355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleosome core displacement in vitro via a metastable transcription factor-nucleosome complex.
    Workman JL; Kingston RE
    Science; 1992 Dec; 258(5089):1780-4. PubMed ID: 1465613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites.
    Polach KJ; Widom J
    J Mol Biol; 1996 May; 258(5):800-12. PubMed ID: 8637011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Unraveling condition specific gene transcriptional regulatory networks in Saccharomyces cerevisiae.
    Kim H; Hu W; Kluger Y
    BMC Bioinformatics; 2006 Mar; 7():165. PubMed ID: 16551355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genes regulated cooperatively by one or more transcription factors and their identification in whole eukaryotic genomes.
    Wagner A
    Bioinformatics; 1999 Oct; 15(10):776-84. PubMed ID: 10705431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle.
    Wu WS; Li WH; Chen BS
    BMC Bioinformatics; 2006 Sep; 7():421. PubMed ID: 17010188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cooperative binding between distant transcription factors is a hallmark of active enhancers.
    Rao S; Ahmad K; Ramachandran S
    Mol Cell; 2021 Apr; 81(8):1651-1665.e4. PubMed ID: 33705711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RoboCOP: jointly computing chromatin occupancy profiles for numerous factors from chromatin accessibility data.
    Mitra S; Zhong J; Tran TQ; MacAlpine DM; Hartemink AJ
    Nucleic Acids Res; 2021 Aug; 49(14):7925-7938. PubMed ID: 34255854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Promoter-proximal transcription factor binding is transcriptionally active when coupled with nucleosome repositioning in immediate vicinity.
    Yadav VK; Thakur RK; Eckloff B; Baral A; Singh A; Halder R; Kumar A; Alam MP; Kundu TK; Pandita R; Pandita TK; Wieben ED; Chowdhury S
    Nucleic Acids Res; 2014 Sep; 42(15):9602-11. PubMed ID: 25081206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predictive models of eukaryotic transcriptional regulation reveals changes in transcription factor roles and promoter usage between metabolic conditions.
    Holland P; Bergenholm D; Börlin CS; Liu G; Nielsen J
    Nucleic Acids Res; 2019 Jun; 47(10):4986-5000. PubMed ID: 30976803
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated assessment and prediction of transcription factor binding.
    Beyer A; Workman C; Hollunder J; Radke D; Möller U; Wilhelm T; Ideker T
    PLoS Comput Biol; 2006 Jun; 2(6):e70. PubMed ID: 16789814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Condition specific transcription factor binding site characterization in Saccharomyces cerevisiae.
    Harrison R; DeLisi C
    Bioinformatics; 2002 Oct; 18(10):1289-96. PubMed ID: 12376372
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cooperative binding of transcription factors in the human genome.
    Nie Y; Shu C; Sun X
    Genomics; 2020 Sep; 112(5):3427-3434. PubMed ID: 32574834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of protein function using protein-protein interaction data.
    Deng M; Zhang K; Mehta S; Chen T; Sun F
    Proc IEEE Comput Soc Bioinform Conf; 2002; 1():197-206. PubMed ID: 15838136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.