These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 25559641)
1. Long-term sustained release of salicylic acid from cross-linked biodegradable polyester induces a reduced foreign body response in mice. Chandorkar Y; Bhaskar N; Madras G; Basu B Biomacromolecules; 2015 Feb; 16(2):636-49. PubMed ID: 25559641 [TBL] [Abstract][Full Text] [Related]
2. Cross-linked, biodegradable, cytocompatible salicylic acid based polyesters for localized, sustained delivery of salicylic acid: an in vitro study. Chandorkar Y; Bhagat RK; Madras G; Basu B Biomacromolecules; 2014 Mar; 15(3):863-75. PubMed ID: 24517727 [TBL] [Abstract][Full Text] [Related]
3. Controlled Release of Salicylic Acid from Biodegradable Cross-Linked Polyesters. Dasgupta Q; Chatterjee K; Madras G Mol Pharm; 2015 Sep; 12(9):3479-89. PubMed ID: 26284981 [TBL] [Abstract][Full Text] [Related]
4. Feasibility of poly (ϵ-caprolactone-co-DL-lactide) as a biodegradable material for in situ forming implants: evaluation of drug release and in vivo degradation. Zhang X; Zhang C; Zhang W; Meng S; Liu D; Wang P; Guo J; Li J; Guan Y; Yang D Drug Dev Ind Pharm; 2015 Feb; 41(2):342-52. PubMed ID: 24320881 [TBL] [Abstract][Full Text] [Related]
5. Foreign body response to subcutaneous biomaterial implants in a mast cell-deficient Kit(w-Sh) murine model. Avula MN; Rao AN; McGill LD; Grainger DW; Solzbacher F Acta Biomater; 2014 May; 10(5):1856-63. PubMed ID: 24406200 [TBL] [Abstract][Full Text] [Related]
6. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Sung HJ; Meredith C; Johnson C; Galis ZS Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819 [TBL] [Abstract][Full Text] [Related]
7. [Estimation of biocompatibility of fibers with large mechanical resistance]. Zywicka B Polim Med; 2004; 34(3):3-48. PubMed ID: 15631154 [TBL] [Abstract][Full Text] [Related]
8. Modulation of the foreign body response to implanted sensor models through device-based delivery of the tyrosine kinase inhibitor, masitinib. Avula MN; Rao AN; McGill LD; Grainger DW; Solzbacher F Biomaterials; 2013 Dec; 34(38):9737-46. PubMed ID: 24060424 [TBL] [Abstract][Full Text] [Related]
9. In vivo biocompatibility, sustained-release and stability of triptorelin formulations based on a liquid, degradable polymer. Asmus LR; Tille JC; Kaufmann B; Melander L; Weiss T; Vessman K; Koechling W; Schwach G; Gurny R; Möller M J Control Release; 2013 Feb; 165(3):199-206. PubMed ID: 23220105 [TBL] [Abstract][Full Text] [Related]
10. Multiple tissue response modifiers to promote angiogenesis and prevent the foreign body reaction around subcutaneous implants. Kastellorizios M; Papadimitrakopoulos F; Burgess DJ J Control Release; 2015 Sep; 214():103-11. PubMed ID: 26216396 [TBL] [Abstract][Full Text] [Related]
11. Biocompatibility of poly(D,L-lactic-co-hydroxymethyl glycolic acid) microspheres after subcutaneous and subcapsular renal injection. Kazazi-Hyseni F; Zandstra J; Popa ER; Goldschmeding R; Lathuile AA; Veldhuis GJ; Van Nostrum CF; Hennink WE; Kok RJ Int J Pharm; 2015 Mar; 482(1-2):99-109. PubMed ID: 25497444 [TBL] [Abstract][Full Text] [Related]
12. Reduction of the pro-inflammatory response by tetrandrine-loading poly(L-lactic acid) films in vitro and in vivo. Wang QS; Cui YL; Gao LN; Guo Y; Li RX; Zhang XZ J Biomed Mater Res A; 2014 Nov; 102(11):4098-107. PubMed ID: 24442958 [TBL] [Abstract][Full Text] [Related]
13. Prevention of foreign body reaction in a pre-clinical large animal model. Kastellorizios M; Papadimitrakopoulos F; Burgess DJ J Control Release; 2015 Mar; 202():101-7. PubMed ID: 25645376 [TBL] [Abstract][Full Text] [Related]
14. Novel biopolymers as implant matrix for the delivery of ciprofloxacin: biocompatibility, degradation, and in vitro antibiotic release. Fulzele SV; Satturwar PM; Dorle AK J Pharm Sci; 2007 Jan; 96(1):132-44. PubMed ID: 16960824 [TBL] [Abstract][Full Text] [Related]
15. Influence of diabetes on the foreign body response to nitric oxide-releasing implants. Soto RJ; Merricks EP; Bellinger DA; Nichols TC; Schoenfisch MH Biomaterials; 2018 Mar; 157():76-85. PubMed ID: 29245053 [TBL] [Abstract][Full Text] [Related]
16. In vivo kinetic degradation analysis and biocompatibility of aliphatic polyester polyurethanes. Knight PT; Kirk JT; Anderson JM; Mather PT J Biomed Mater Res A; 2010 Aug; 94(2):333-43. PubMed ID: 20583334 [TBL] [Abstract][Full Text] [Related]
17. In vivo tissue response to resorbable silica xerogels as controlled-release materials. Radin S; El-Bassyouni G; Vresilovic EJ; Schepers E; Ducheyne P Biomaterials; 2005 Mar; 26(9):1043-52. PubMed ID: 15369693 [TBL] [Abstract][Full Text] [Related]
18. Histological changes over time around the site of sustained release naltrexone-poly(DL-lactide) implants in humans. Hulse GK; Stalenberg V; McCallum D; Smit W; O'neil G; Morris N; Tait RJ J Control Release; 2005 Nov; 108(1):43-55. PubMed ID: 16154223 [TBL] [Abstract][Full Text] [Related]
19. Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. Valence Sd; Tille JC; Chaabane C; Gurny R; Bochaton-Piallat ML; Walpoth BH; Möller M Eur J Pharm Biopharm; 2013 Sep; 85(1):78-86. PubMed ID: 23958319 [TBL] [Abstract][Full Text] [Related]
20. In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(ε-caprolactone). Seyednejad H; Gawlitta D; Kuiper RV; de Bruin A; van Nostrum CF; Vermonden T; Dhert WJ; Hennink WE Biomaterials; 2012 Jun; 33(17):4309-18. PubMed ID: 22436798 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]