These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25559661)

  • 41. Three-Layered Design of Electrothermal Actuators for Minimal Voltage Operation.
    Tibi G; Sachyani Keneth E; Layani M; Magdassi S; Degani A
    Soft Robot; 2020 Oct; 7(5):649-662. PubMed ID: 32160139
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Flexible electroluminescent device with inkjet-printed carbon nanotube electrodes.
    Azoubel S; Shemesh S; Magdassi S
    Nanotechnology; 2012 Aug; 23(34):344003. PubMed ID: 22885854
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of Electrode Morphology on Performance of Ionic Actuators Based on Vat Photopolymerized Membranes.
    Morozov OS; Ivanchenko AV; Nechausov SS; Bulgakov BA
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36363665
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Flexible carbon nanotube--Cu2O hybrid electrodes for li-ion batteries.
    Goyal A; Reddy AL; Ajayan PM
    Small; 2011 Jun; 7(12):1709-13. PubMed ID: 21574248
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electron tunneling in carbon nanotube composites.
    Gau C; Kuo CY; Ko HS
    Nanotechnology; 2009 Sep; 20(39):395705. PubMed ID: 19724108
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Development of 3D carbon nanotube interdigitated finger electrodes on polymer substrate for flexible capacitive sensor application.
    Hu CF; Wang JY; Liu YC; Tsai MH; Fang W
    Nanotechnology; 2013 Nov; 24(44):444006. PubMed ID: 24113135
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface Modification of Anisotropic Dielectric Elastomer Actuators with Uni- and Bi-axially Wrinkled Carbon Electrodes for Wettability Control.
    Jun K; Kim D; Ryu S; Oh IK
    Sci Rep; 2017 Jul; 7(1):6091. PubMed ID: 28729661
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Printable polymer actuators from ionic liquid, soluble polyimide, and ubiquitous carbon materials.
    Imaizumi S; Ohtsuki Y; Yasuda T; Kokubo H; Watanabe M
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6307-15. PubMed ID: 23738653
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Laser fabrication of graphene-based electrothermal actuators enabling predicable deformation.
    Zhu L; Gao YY; Han B; Zhang YL; Sun HB
    Opt Lett; 2019 Mar; 44(6):1363-1366. PubMed ID: 30874651
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High performance semiconducting enriched carbon nanotube thin film transistors using metallic carbon nanotubes as electrodes.
    Sarker BK; Kang N; Khondaker SI
    Nanoscale; 2014 May; 6(9):4896-902. PubMed ID: 24671657
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring.
    Jung HC; Moon JH; Baek DH; Lee JH; Choi YY; Hong JS; Lee SH
    IEEE Trans Biomed Eng; 2012 May; 59(5):1472-9. PubMed ID: 22410324
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Advances in carbon nanotube based electrochemical sensors for bioanalytical applications.
    Vashist SK; Zheng D; Al-Rubeaan K; Luong JH; Sheu FS
    Biotechnol Adv; 2011; 29(2):169-88. PubMed ID: 21034805
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing.
    Tawfick S; O'Brien K; Hart AJ
    Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hierarchical carbon nanotube composite yarn muscles.
    Song Y; Zhou S; Jin K; Qiao J; Li D; Xu C; Hu D; Di J; Li M; Zhang Z; Li Q
    Nanoscale; 2018 Feb; 10(8):4077-4084. PubMed ID: 29431840
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A highly efficient buckypaper-based electrode material for mediatorless laccase-catalyzed dioxygen reduction.
    Hussein L; Rubenwolf S; von Stetten F; Urban G; Zengerle R; Krueger M; Kerzenmacher S
    Biosens Bioelectron; 2011 Jun; 26(10):4133-8. PubMed ID: 21543222
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Glucose oxidase/cellulose-carbon nanotube composite paper as a biocompatible bioelectrode for biofuel cells.
    Won K; Kim YH; An S; Lee HJ; Park S; Choi YK; Kim JH; Hwang HI; Kim HJ; Kim H; Lee SH
    Appl Biochem Biotechnol; 2013 Nov; 171(5):1194-202. PubMed ID: 23508863
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors.
    Cheng H; Dong Z; Hu C; Zhao Y; Hu Y; Qu L; Chen N; Dai L
    Nanoscale; 2013 Apr; 5(8):3428-34. PubMed ID: 23475309
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fast low-voltage electroactive actuators using nanostructured polymer electrolytes.
    Kim O; Shin TJ; Park MJ
    Nat Commun; 2013; 4():2208. PubMed ID: 23896756
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector.
    Notarianni M; Liu J; Mirri F; Pasquali M; Motta N
    Nanotechnology; 2014 Oct; 25(43):435405. PubMed ID: 25301789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.