BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25559692)

  • 1. Quantitative assessment of the effect of cholesterol on blood glucose measurement using near infrared spectroscopy and a method for error reduction.
    Jiang J; Zhang K; Qin J; Min X; Zhang L; Zou D; Xu K
    Lasers Surg Med; 2015 Jan; 47(1):88-97. PubMed ID: 25559692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Experimental research on OGTT for non-invasive blood glucose detection through near-infrared spectroscopy ranging from 1100 nm to 1700 nm].
    Chen W; Cui H; Liu R; Xu K; Chne M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Oct; 21(5):824-7. PubMed ID: 15553867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-invasive blood glucose monitoring by means of near infrared spectroscopy: investigation of long-term accuracy and stability.
    Sämann A; Fischbacher CH; Jagemann KU; Danzer K; Schüler J; Papenkordt L; Müller UA
    Exp Clin Endocrinol Diabetes; 2000; 108(6):406-13. PubMed ID: 11026754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy.
    Malin SF; Ruchti TL; Blank TB; Thennadil SN; Monfre SL
    Clin Chem; 1999 Sep; 45(9):1651-8. PubMed ID: 10471679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of performance of partial least squares regression, secured principal component regression, and modified secured principal component regression for determination of human serum albumin, gamma-globulin and glucose in buffer solutions and in vivo blood glucose quantification by near-infrared spectroscopy.
    Li BY; Kasemsumran S; Hu Y; Liang YZ; Ozaki Y
    Anal Bioanal Chem; 2007 Jan; 387(2):603-11. PubMed ID: 17171339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Application of O-PLS in fundamental study of non-invasive measurement of human blood glucose concentration with near infrared spectroscopy].
    Lü LN; Liu R; Zhou DW
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Dec; 25(12):1950-4. PubMed ID: 16544479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Research on noninvasive blood glucose measurement with simulate sample by NIR spectroscopy].
    Zhang Y; Lü LN; Xu KX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Apr; 25(4):512-5. PubMed ID: 16097673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impaired glucose tolerance is not associated with lipid intolerance.
    Henkel E; Temelkova-Kurktschiev T; Koehler C; Pietzsch J; Leonhardt W; Hanefeld M
    Diabetes Nutr Metab; 2002 Apr; 15(2):84-90. PubMed ID: 12059096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applying spectral peak area analysis in near-infrared spectroscopy moisture assays.
    Brülls M; Folestad S; Sparén A; Rasmuson A; Salomonsson J
    J Pharm Biomed Anal; 2007 May; 44(1):127-36. PubMed ID: 17391888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term beneficial effects of glipizide treatment on glucose tolerance in subjects with impaired glucose tolerance.
    Eriksson JG; Lehtovirta M; Ehrnström B; Salmela S; Groop L
    J Intern Med; 2006 Jun; 259(6):553-60. PubMed ID: 16704555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impaired glucose metabolism in colorectal cancer.
    Ehrmann-Jósko A; Siemińska J; Górnicka B; Ziarkiewicz-Wróblewska B; Ziółkowski B; Muszyński J
    Scand J Gastroenterol; 2006 Sep; 41(9):1079-86. PubMed ID: 16938722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy.
    Maruo K; Tsurugi M; Tamura M; Ozaki Y
    Appl Spectrosc; 2003 Oct; 57(10):1236-44. PubMed ID: 14639751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of urinary albumin excretion rate and microalbuminuria in various glucose tolerance subjects.
    Wang XL; Lu JM; Pan CY; Tian H; Li CL
    Diabet Med; 2005 Mar; 22(3):332-5. PubMed ID: 15717883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-infrared reflectance spectroscopy for noninvasive monitoring of metabolites.
    Heise HM; Bittner A; Marbach R
    Clin Chem Lab Med; 2000 Feb; 38(2):137-45. PubMed ID: 10834401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reagentless blood analysis by near-infrared Raman spectroscopy.
    Koo TW; Berger AJ; Itzkan I; Horowitz G; Feld MS
    Diabetes Technol Ther; 1999; 1(2):153-7. PubMed ID: 11475287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical assessment of near-infrared spectroscopy for noninvasive diabetes screening.
    Brown CD; Davis HT; Ediger MN; Fleming CM; Hull EL; Rohrscheib M
    Diabetes Technol Ther; 2005 Jun; 7(3):456-66. PubMed ID: 15929677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of glucose in whole blood by near-infrared spectroscopy: influence of wavelength region, preprocessing, and hemoglobin concentration.
    Kim YJ; Yoon G
    J Biomed Opt; 2006; 11(4):041128. PubMed ID: 16965156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of the partial least squares model performance for oral glucose intake experiments by inside mean centering and inside multiplicative signal correction.
    Du YP; Kasemsumran S; Maruo K; Nakagawa T; Ozaki Y
    Anal Sci; 2005 Aug; 21(8):979-84. PubMed ID: 16122172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noninvasive blood glucose measurements by near-infrared transmission spectroscopy across human tongues.
    Burmeister JJ; Arnold MA; Small GW
    Diabetes Technol Ther; 2000; 2(1):5-16. PubMed ID: 11467321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation study of in vitro glucose measurement by NIR spectroscopy and a method of error reduction.
    Tarumi M; Shimada M; Murakami T; Tamura M; Shimada M; Arimoto H; Yamada Y
    Phys Med Biol; 2003 Aug; 48(15):2373-90. PubMed ID: 12953904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.