These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 25559707)

  • 1. First-principles calculations of oxygen vacancy formation and metallic behavior at a β-MnO2 grain boundary.
    Dawson JA; Chen H; Tanaka I
    ACS Appl Mater Interfaces; 2015 Jan; 7(3):1726-34. PubMed ID: 25559707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen vacancy formation and reduction properties of β-MnO2 grain boundaries and the potential for high electrochemical performance.
    Dawson JA; Tanaka I
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17776-84. PubMed ID: 25247793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Li Intercalation into a β-MnO2 Grain Boundary.
    Dawson JA; Tanaka I
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8125-31. PubMed ID: 25808228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rutile (β-)MnO2 surfaces and vacancy formation for high electrochemical and catalytic performance.
    Tompsett DA; Parker SC; Islam MS
    J Am Chem Soc; 2014 Jan; 136(4):1418-26. PubMed ID: 24446882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-MnO2 as a cathode material for lithium ion batteries from first principles calculations.
    Wang D; Liu LM; Zhao SJ; Li BH; Liu H; Lang XF
    Phys Chem Chem Phys; 2013 Jun; 15(23):9075-83. PubMed ID: 23646354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and segregation of dopant-defect complexes at grain boundaries in nanocrystalline doped ceria.
    Dholabhai PP; Aguiar JA; Wu L; Holesinger TG; Aoki T; Castro RH; Uberuaga BP
    Phys Chem Chem Phys; 2015 Jun; 17(23):15375-85. PubMed ID: 26000664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ruthenia-based electrochemical supercapacitors: insights from first-principles calculations.
    Ozoliņš V; Zhou F; Asta M
    Acc Chem Res; 2013 May; 46(5):1084-93. PubMed ID: 23560700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Momentum-dependent band spin splitting in semiconducting MnO2: a density functional calculation.
    Noda Y; Ohno K; Nakamura S
    Phys Chem Chem Phys; 2016 May; 18(19):13294-303. PubMed ID: 27119122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomic structures and oxygen dynamics of CeO2 grain boundaries.
    Feng B; Sugiyama I; Hojo H; Ohta H; Shibata N; Ikuhara Y
    Sci Rep; 2016 Feb; 6():20288. PubMed ID: 26838958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic structure and oxygen vacancies in PdO and ZnO: validation of DFT models.
    Bruska MK; Czekaj I; Delley B; Mantzaras J; Wokaun A
    Phys Chem Chem Phys; 2011 Sep; 13(35):15947-54. PubMed ID: 21826290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab Initio Modeling of Bulk and Intragranular Diffusion in Ni Alloys.
    Alexandrov V; Sushko ML; Schreiber DK; Bruemmer SM; Rosso KM
    J Phys Chem Lett; 2015 May; 6(9):1618-23. PubMed ID: 26263324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Intrinsic Catalytic Activity of λ-MnO2 by Electrochemical Tuning and Oxygen Vacancy Generation.
    Lee S; Nam G; Sun J; Lee JS; Lee HW; Chen W; Cho J; Cui Y
    Angew Chem Int Ed Engl; 2016 Jul; 55(30):8599-604. PubMed ID: 27254822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examination of oxygen vacancy formation in Mn-doped CeO2 (111) using DFT+U and the hybrid functional HSE06.
    Krcha MD; Janik MJ
    Langmuir; 2013 Aug; 29(32):10120-31. PubMed ID: 23848253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab initio study of symmetrical tilt grain boundaries in bcc Fe: structural units, magnetic moments, interfacial bonding, local energy and local stress.
    Bhattacharya SK; Tanaka S; Shiihara Y; Kohyama M
    J Phys Condens Matter; 2013 Apr; 25(13):135004. PubMed ID: 23478447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation energies and electronic structure of intrinsic vacancy defects and oxygen vacancy clustering in BaZrO3.
    Muhammad Alay-E-Abbas S; Nazir S; Shaukat A
    Phys Chem Chem Phys; 2016 Aug; 18(34):23737-45. PubMed ID: 27514742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay between intrinsic point defects and low-angle grain boundary in bcc tungsten: effects of local stress field.
    Niu LL; Zhang Y; Shu X; Jin S; Zhou HB; Gao F; Lu GH
    J Phys Condens Matter; 2015 Jul; 27(25):255007. PubMed ID: 26045469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principles study of thermodynamic stability and the electronic properties of intrinsic vacancy defects in barium hafnate.
    Alay-e-Abbas SM; Shaukat A
    J Phys Condens Matter; 2014 Oct; 26(43):435501. PubMed ID: 25300032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio cluster calculations on the electronic structure of oxygen vacancies at the polar ZnO(0001) surface and on the adsorption of H2, CO, and CO2 at these sites.
    Fink K
    Phys Chem Chem Phys; 2006 Apr; 8(13):1482-9. PubMed ID: 16633631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The electronic properties of an oxygen vacancy at ZrO(2)-terminated (001) surfaces of a cubic PbZrO(3): computer simulations from the first principles.
    Kotomin EA; Piskunov S; Zhukovskii YF; Eglitis RI; Gopejenko A; Ellis DE
    Phys Chem Chem Phys; 2008 Aug; 10(29):4258-63. PubMed ID: 18633546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen vacancy formation in CeO2 and Ce(1-x)Zr(x)O2 solid solutions: electron localization, electrostatic potential and structural relaxation.
    Wang HF; Li HY; Gong XQ; Guo YL; Lu GZ; Hu P
    Phys Chem Chem Phys; 2012 Dec; 14(48):16521-35. PubMed ID: 23080297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.