These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 25559748)

  • 1. A U-system approach for predicting metabolic behaviors and responses based on an alleged metabolic reaction network.
    Sriyudthsak K; Sawada Y; Chiba Y; Yamashita Y; Kanaya S; Onouchi H; Fujiwara T; Naito S; Voit EO; Shiraishi F; Hirai MY
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S4. PubMed ID: 25559748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PreProPath: An Uncertainty-Aware Algorithm for Identifying Predictable Profitable Pathways in Biochemical Networks.
    Ullah E; Walker M; Lee K; Hassoun S
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(6):1405-15. PubMed ID: 26671810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a metabolic reaction network from time-series data of metabolite concentrations.
    Sriyudthsak K; Shiraishi F; Hirai MY
    PLoS One; 2013; 8(1):e51212. PubMed ID: 23326311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting genetic engineering targets with Elementary Flux Mode Analysis: a review of four current methods.
    Ruckerbauer DE; Jungreuthmayer C; Zanghellini J
    N Biotechnol; 2015 Dec; 32(6):534-46. PubMed ID: 25917465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An introduction to metabolic networks and their structural analysis.
    Lacroix V; Cottret L; Thébault P; Sagot MF
    IEEE/ACM Trans Comput Biol Bioinform; 2008; 5(4):594-617. PubMed ID: 18989046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic control analysis under uncertainty: framework development and case studies.
    Wang L; Birol I; Hatzimanikatis V
    Biophys J; 2004 Dec; 87(6):3750-63. PubMed ID: 15465856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. anNET: a tool for network-embedded thermodynamic analysis of quantitative metabolome data.
    Zamboni N; Kümmel A; Heinemann M
    BMC Bioinformatics; 2008 Apr; 9():199. PubMed ID: 18416814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Software for dynamic analysis of tracer-based metabolomic data: estimation of metabolic fluxes and their statistical analysis.
    Selivanov VA; Marin S; Lee PW; Cascante M
    Bioinformatics; 2006 Nov; 22(22):2806-12. PubMed ID: 17000750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The application of flux balance analysis in systems biology.
    Gianchandani EP; Chavali AK; Papin JA
    Wiley Interdiscip Rev Syst Biol Med; 2010; 2(3):372-382. PubMed ID: 20836035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NIBBS-search for fast and accurate prediction of phenotype-biased metabolic systems.
    Schmidt MC; Rocha AM; Padmanabhan K; Shpanskaya Y; Banfield J; Scott K; Mihelcic JR; Samatova NF
    PLoS Comput Biol; 2012; 8(5):e1002490. PubMed ID: 22589706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling challenges in the synthetic biology of secondary metabolism.
    Breitling R; Achcar F; Takano E
    ACS Synth Biol; 2013 Jul; 2(7):373-8. PubMed ID: 23659212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inference of biochemical network models in S-system using multiobjective optimization approach.
    Liu PK; Wang FS
    Bioinformatics; 2008 Apr; 24(8):1085-92. PubMed ID: 18321886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic network segmentation: A probabilistic graphical modeling approach to identify the sites and sequential order of metabolic regulation from non-targeted metabolomics data.
    Kuehne A; Mayr U; Sévin DC; Claassen M; Zamboni N
    PLoS Comput Biol; 2017 Jun; 13(6):e1005577. PubMed ID: 28598965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using metabolome data for mathematical modeling of plant metabolic systems.
    Hirai MY; Shiraishi F
    Curr Opin Biotechnol; 2018 Dec; 54():138-144. PubMed ID: 30195121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. k-Cone analysis: determining all candidate values for kinetic parameters on a network scale.
    Famili I; Mahadevan R; Palsson BO
    Biophys J; 2005 Mar; 88(3):1616-25. PubMed ID: 15626710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic network modularity arising from simple growth processes.
    Takemoto K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036107. PubMed ID: 23030980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observability of Plant Metabolic Networks Is Reflected in the Correlation of Metabolic Profiles.
    Schwahn K; Küken A; Kliebenstein DJ; Fernie AR; Nikoloski Z
    Plant Physiol; 2016 Oct; 172(2):1324-1333. PubMed ID: 27566166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating dynamic metabolic physiology through network integration of quantitative time-course metabolomics.
    Bordbar A; Yurkovich JT; Paglia G; Rolfsson O; Sigurjónsson ÓE; Palsson BO
    Sci Rep; 2017 Apr; 7():46249. PubMed ID: 28387366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solving the differential biochemical Jacobian from metabolomics covariance data.
    Nägele T; Mair A; Sun X; Fragner L; Teige M; Weckwerth W
    PLoS One; 2014; 9(4):e92299. PubMed ID: 24695071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mathematical Modeling and Dynamic Simulation of Metabolic Reaction Systems Using Metabolome Time Series Data.
    Sriyudthsak K; Shiraishi F; Hirai MY
    Front Mol Biosci; 2016; 3():15. PubMed ID: 27200361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.