These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 25560273)

  • 1. Four decades of finite element analysis of orthopaedic devices: where are we now and what are the opportunities?
    Taylor M; Prendergast PJ
    J Biomech; 2015 Mar; 48(5):767-78. PubMed ID: 25560273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patient-specific modelling of bone and bone-implant systems: the challenges.
    Pankaj P
    Int J Numer Method Biomed Eng; 2013 Feb; 29(2):233-49. PubMed ID: 23281281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of finite element modelling of a modular metal-on-polyethylene total hip replacement.
    Hua X; Wang L; Al-Hajjar M; Jin Z; Wilcox RK; Fisher J
    Proc Inst Mech Eng H; 2014 Jul; 228(7):682-92. PubMed ID: 24963036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-patient finite element simulation of keeled versus pegged glenoid implant designs in shoulder arthroplasty.
    Pomwenger W; Entacher K; Resch H; Schuller-Götzburg P
    Med Biol Eng Comput; 2015 Sep; 53(9):781-90. PubMed ID: 25850981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wear simulation of the ProDisc-L disc replacement using adaptive finite element analysis.
    Rawlinson JJ; Punga KP; Gunsallus KL; Bartel DL; Wright TM
    J Neurosurg Spine; 2007 Aug; 7(2):165-73. PubMed ID: 17688056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accounting for patient variability in finite element analysis of the intact and implanted hip and knee: a review.
    Taylor M; Bryan R; Galloway F
    Int J Numer Method Biomed Eng; 2013 Feb; 29(2):273-92. PubMed ID: 23255372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element analysis of polyethylene wear in total hip replacement: A literature review.
    Wang L; Isaac G; Wilcox R; Jones A; Thompson J
    Proc Inst Mech Eng H; 2019 Nov; 233(11):1067-1088. PubMed ID: 31466506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive meshing technique applied to an orthopaedic finite element contact problem.
    Roarty CM; Grosland NM
    Iowa Orthop J; 2004; 24():21-9. PubMed ID: 15296201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element-based probabilistic analysis tool for orthopaedic applications.
    Easley SK; Pal S; Tomaszewski PR; Petrella AJ; Rullkoetter PJ; Laz PJ
    Comput Methods Programs Biomed; 2007 Jan; 85(1):32-40. PubMed ID: 17084937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element modelling approaches for well-ordered porous metallic materials for orthopaedic applications: cost effectiveness and geometrical considerations.
    Quevedo González FJ; Nuño N
    Comput Methods Biomech Biomed Engin; 2016; 19(8):845-54. PubMed ID: 26260268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical analysis of the Universal 2 implant in total wrist arthroplasty: a finite element study.
    Gislason MK; Foster E; Bransby-Zachary M; Nash DH
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(10):1113-1121. PubMed ID: 28580792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesh morphing for finite element analysis of implant positioning in cementless total hip replacements.
    Bah MT; Nair PB; Browne M
    Med Eng Phys; 2009 Dec; 31(10):1235-43. PubMed ID: 19744873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element wear prediction using adaptive meshing at the modular taper interface of hip implants.
    Bitter T; Khan I; Marriott T; Lovelady E; Verdonschot N; Janssen D
    J Mech Behav Biomed Mater; 2018 Jan; 77():616-623. PubMed ID: 29100204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient computational method for assessing the effects of implant positioning in cementless total hip replacements.
    Bah MT; Nair PB; Taylor M; Browne M
    J Biomech; 2011 Apr; 44(7):1417-22. PubMed ID: 21295306
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A probabilistic modelling scheme for analysis of long-term failure of cemented femoral joint replacements.
    Galibarov PE; Prendergast PJ; Lennon AB
    Proc Inst Mech Eng H; 2012 Dec; 226(12):927-38. PubMed ID: 23636956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are PEEK-on-Ceramic Bearings an Option for Total Disc Arthroplasty? An In Vitro Tribology Study.
    Siskey R; Ciccarelli L; Lui MK; Kurtz SM
    Clin Orthop Relat Res; 2016 Nov; 474(11):2428-2440. PubMed ID: 27677290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nucleus replacement device properties on lumbar spine mechanics.
    Rundell SA; Guerin HL; Auerbach JD; Kurtz SM
    Spine (Phila Pa 1976); 2009 Sep; 34(19):2022-32. PubMed ID: 19730210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Custom-designed orthopedic implants evaluated using finite element analysis of patient-specific computed tomography data: femoral-component case study.
    Harrysson OL; Hosni YA; Nayfeh JF
    BMC Musculoskelet Disord; 2007 Sep; 8():91. PubMed ID: 17854508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element models in tissue mechanics and orthopaedic implant design.
    Prendergast PJ
    Clin Biomech (Bristol, Avon); 1997 Sep; 12(6):343-366. PubMed ID: 11415744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.