BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 25560633)

  • 1. Potentials of mean force and escape times of surfactants from micelles and hydrophobic surfaces using molecular dynamics simulations.
    Yuan F; Wang S; Larson RG
    Langmuir; 2015 Feb; 31(4):1336-43. PubMed ID: 25560633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-grained molecular dynamics simulation of self-assembly and surface adsorption of ionic surfactants using an implicit water model.
    Wang S; Larson RG
    Langmuir; 2015 Feb; 31(4):1262-71. PubMed ID: 25565113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Insights on Morphology, Composition, and Stability of Mixed Micelles Formed by Ionic Surfactant and Nonionic Block Copolymer in Water Using Coarse-Grained Molecular Dynamics Simulations.
    Bhendale M; Singh JK
    Langmuir; 2023 Apr; 39(14):5031-5040. PubMed ID: 36992607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale Molecular Dynamics Simulations of Model Hydrophobically Modified Ethylene Oxide Urethane Micelles.
    Yuan F; Larson RG
    J Phys Chem B; 2015 Sep; 119(38):12540-51. PubMed ID: 26337615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coarse-grained molecular dynamics simulations of the sphere to rod transition in surfactant micelles.
    Sangwai AV; Sureshkumar R
    Langmuir; 2011 Jun; 27(11):6628-38. PubMed ID: 21524093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coarse-Grain Molecular Dynamics Simulations To Investigate the Bulk Viscosity and Critical Micelle Concentration of the Ionic Surfactant Sodium Dodecyl Sulfate (SDS) in Aqueous Solution.
    Ruiz-Morales Y; Romero-Martínez A
    J Phys Chem B; 2018 Apr; 122(14):3931-3943. PubMed ID: 29533651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binary interactions and salt-induced coalescence of spherical micelles of cationic surfactants from molecular dynamics simulations.
    Sangwai AV; Sureshkumar R
    Langmuir; 2012 Jan; 28(2):1127-35. PubMed ID: 22149605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Aggregation of Ionic Surfactants Using a Smeared Charge Approximation in Dissipative Particle Dynamics Simulations.
    Mao R; Lee MT; Vishnyakov A; Neimark AV
    J Phys Chem B; 2015 Sep; 119(35):11673-83. PubMed ID: 26241704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the Alzheimer's Aβ40 peptide in SDS micelles using molecular dynamics simulations.
    Jalili S; Akhavan M
    Biophys Chem; 2011 Jan; 153(2-3):179-86. PubMed ID: 21183271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of sodium dodecyl sulfate micelles in water-the effect of the force field.
    Tang X; Koenig PH; Larson RG
    J Phys Chem B; 2014 Apr; 118(14):3864-80. PubMed ID: 24620851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Dynamics Simulations of Micelle Properties and Behaviors of Sodium Lauryl Ether Sulfate Penetrating Ceramide and Phospholipid Bilayers.
    Song Y; Lee JH; Jung I; Seo B; Hwang H
    J Phys Chem B; 2020 Jul; 124(28):5919-5929. PubMed ID: 32551618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coarse-Grained Model Incorporating Short- and Long-Range Effective Potentials for the Fast Simulation of Micelle Formation in Solutions of Ionic Surfactants.
    Peroukidis SD; Stott IP; Mavrantzas VG
    J Phys Chem B; 2022 Jul; 126(29):5555-5569. PubMed ID: 35838193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between the water soluble poly{1,4-phenylene-[9,9-bis(4-phenoxy butylsulfonate)]fluorene-2,7-diyl} copolymer and ionic surfactants followed by spectroscopic and conductivity measurements.
    Tapia MJ; Burrows HD; Valente AJ; Pradhan S; Scherf U; Lobo VM; Pina J; Seixas de Melo J
    J Phys Chem B; 2005 Oct; 109(41):19108-15. PubMed ID: 16853464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variegated micelle surfaces: correlating the microstructure of mixed surfactant micelles with bulk solution properties.
    Griffiths PC; Cheung AY; Farley C; Fallis IA; Howe AM; Pitt AR; Heenan RK; King SM; Grillo I
    Langmuir; 2004 Aug; 20(17):7313-22. PubMed ID: 15301521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of micellar kinetics in relation to technological processes.
    Patist A; Kanicky JR; Shukla PK; Shah DO
    J Colloid Interface Sci; 2002 Jan; 245(1):1-15. PubMed ID: 16290329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulation of interactions between a sodium dodecyl sulfate micelle and a poly(ethylene oxide) polymer.
    Shang BZ; Wang Z; Larson RG
    J Phys Chem B; 2008 Mar; 112(10):2888-900. PubMed ID: 18275181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complementary use of simulations and molecular-thermodynamic theory to model micellization.
    Stephenson BC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical and conformational studies on BSA-surfactant interaction in aqueous medium.
    Chakraborty T; Chakraborty I; Moulik SP; Ghosh S
    Langmuir; 2009 Mar; 25(5):3062-74. PubMed ID: 19437713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and dynamics of nonionic surfactants adsorbed at vacuum/ionic liquid interfaces.
    Elola MD; Rodriguez J
    Langmuir; 2013 Nov; 29(44):13379-87. PubMed ID: 24156286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of ionic and nonionic surfactant micelles with a generalized Born implicit-solvent model.
    Wang Y; Wallace JA; Koenig PH; Shen JK
    J Comput Chem; 2011 Aug; 32(11):2348-58. PubMed ID: 21544841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.