BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25560659)

  • 1. Influence of combined use of iodide and compost on Hg accumulation by Lepidium sativum L.
    Smolinska B; Leszczynska J
    J Environ Manage; 2015 Mar; 150():499-507. PubMed ID: 25560659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidative response of Lepidium sativum L. during assisted phytoremediation of Hg contaminated soil.
    Smolinska B; Szczodrowska A
    N Biotechnol; 2017 Sep; 38(Pt B):74-83. PubMed ID: 27432193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein changes in Lepidium sativum L. exposed to Hg during soil phytoremediation.
    Smolinska B; Szczodrowska A; Leszczynska J
    Int J Phytoremediation; 2017 Aug; 19(8):765-773. PubMed ID: 28448157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photosynthetic pigments and peroxidase activity of Lepidium sativum L. during assisted Hg phytoextraction.
    Smolinska B; Leszczynska J
    Environ Sci Pollut Res Int; 2017 May; 24(15):13384-13393. PubMed ID: 28386894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Green waste compost as an amendment during induced phytoextraction of mercury-contaminated soil.
    Smolinska B
    Environ Sci Pollut Res Int; 2015 Mar; 22(5):3528-37. PubMed ID: 25245260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EDTA and urease effects on Hg accumulation by Lepidium sativum.
    Smolińska B; Cedzyńska K
    Chemosphere; 2007 Nov; 69(9):1388-95. PubMed ID: 17574649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of iodide to enhance the phytoextraction of mercury-contaminated soil.
    Wang Y; Greger M
    Sci Total Environ; 2006 Sep; 368(1):30-9. PubMed ID: 16236348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of chelating ligands to enhance mercury accumulation from historically mercury-contaminated soils for phytoextraction.
    Wang J; Xia J; Feng X
    J Environ Manage; 2017 Jan; 186(Pt 2):233-239. PubMed ID: 27217079
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Remediation effect of compost on soluble mercury transfer in a crop of Phaseolus vulgaris.
    Restrepo-Sánchez NE; Acevedo-Betancourth L; Henao-Murillo B; Peláez-Jaramillo C
    J Environ Sci (China); 2015 May; 31():61-7. PubMed ID: 25968259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Medicago sativa L. and compost on organic and inorganic pollutant removal from a mixed contaminated soil and risk assessment using ecotoxicological tests.
    Marchand C; Hogland W; Kaczala F; Jani Y; Marchand L; Augustsson A; Hijri M
    Int J Phytoremediation; 2016 Nov; 18(11):1136-47. PubMed ID: 27216854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives.
    Rodriguez L; Rincón J; Asencio I; Rodríguez-Castellanos L
    Int J Phytoremediation; 2007; 9(1):1-13. PubMed ID: 18246711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfer and bioaccumulation of mercury from soil in cowpea in gold mining sites.
    Marrugo-Negrete J; Durango-Hernández J; Díaz-Fernández L; Urango-Cárdenas I; Araméndiz-Tatis H; Vergara-Flórez V; Bravo AG; Díez S
    Chemosphere; 2020 Jul; 250():126142. PubMed ID: 32105852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiosulphate-induced phytoextraction of mercury in Brassica juncea: Spectroscopic investigations to define a mechanism for Hg uptake.
    Wang J; Anderson CWN; Xing Y; Fan Y; Xia J; Shaheen SM; Rinklebe J; Feng X
    Environ Pollut; 2018 Nov; 242(Pt A):986-993. PubMed ID: 30373044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficiency of white lupin in the removal of mercury from contaminated soils: soil and hydroponic experiments.
    Zornoza P; Millán R; Sierra MJ; Seco A; Esteban E
    J Environ Sci (China); 2010; 22(3):421-7. PubMed ID: 20614785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chelate-assisted phytoextraction of mercury in biosolids.
    Lomonte C; Doronila A; Gregory D; Baker AJ; Kolev SD
    Sci Total Environ; 2011 Jun; 409(13):2685-92. PubMed ID: 21514623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using a plant hormone and a thioligand to improve phytoremediation of Hg-contaminated soil from a petrochemical plant.
    Cassina L; Tassi E; Pedron F; Petruzzelli G; Ambrosini P; Barbafieri M
    J Hazard Mater; 2012 Sep; 231-232():36-42. PubMed ID: 22771350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EDTA and hydrochloric acid effects on mercury accumulation by Lupinus albus.
    Rodríguez L; Alonso-Azcárate J; Villaseñor J; Rodríguez-Castellanos L
    Environ Sci Pollut Res Int; 2016 Dec; 23(24):24739-24748. PubMed ID: 27658402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review on phytoremediation of mercury contaminated soils.
    Liu Z; Chen B; Wang LA; Urbanovich O; Nagorskaya L; Li X; Tang L
    J Hazard Mater; 2020 Dec; 400():123138. PubMed ID: 32947735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monochromatic lights-induced trends in antioxidant and antidiabetic polyphenol accumulation in in vitro callus cultures of Lepidium sativum L.
    Ullah MA; Tungmunnithum D; Garros L; Hano C; Abbasi BH
    J Photochem Photobiol B; 2019 Jul; 196():111505. PubMed ID: 31129506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoextraction of copper from contaminated soil by Elsholtzia splendens as affected by EDTA, citric acid, and compost.
    Yang XE; Peng HY; Jiang LY; He ZL
    Int J Phytoremediation; 2005; 7(1):69-83. PubMed ID: 15943245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.