These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 25560842)

  • 21. Benchmarking differential expression analysis tools for RNA-Seq: normalization-based vs. log-ratio transformation-based methods.
    Quinn TP; Crowley TM; Richardson MF
    BMC Bioinformatics; 2018 Jul; 19(1):274. PubMed ID: 30021534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential gene expression analysis using coexpression and RNA-Seq data.
    Yang EW; Girke T; Jiang T
    Bioinformatics; 2013 Sep; 29(17):2153-61. PubMed ID: 23793751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. BADGE: a novel Bayesian model for accurate abundance quantification and differential analysis of RNA-Seq data.
    Gu J; Wang X; Halakivi-Clarke L; Clarke R; Xuan J
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S6. PubMed ID: 25252852
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data.
    Li X; Brock GN; Rouchka EC; Cooper NGF; Wu D; O'Toole TE; Gill RS; Eteleeb AM; O'Brien L; Rai SN
    PLoS One; 2017; 12(5):e0176185. PubMed ID: 28459823
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RnaSeqSampleSize: real data based sample size estimation for RNA sequencing.
    Zhao S; Li CI; Guo Y; Sheng Q; Shyr Y
    BMC Bioinformatics; 2018 May; 19(1):191. PubMed ID: 29843589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Empirical assessment of analysis workflows for differential expression analysis of human samples using RNA-Seq.
    Williams CR; Baccarella A; Parrish JZ; Kim CC
    BMC Bioinformatics; 2017 Jan; 18(1):38. PubMed ID: 28095772
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bootstrap-based differential gene expression analysis for RNA-Seq data with and without replicates.
    Al Seesi S; Tiagueu YT; Zelikovsky A; Măndoiu II
    BMC Genomics; 2014; 15 Suppl 8(Suppl 8):S2. PubMed ID: 25435284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Class-Information-Based Sparse Component Analysis Method to Identify Differentially Expressed Genes on RNA-Seq Data.
    Liu JX; Xu Y; Gao YL; Zheng CH; Wang D; Zhu Q
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(2):392-8. PubMed ID: 27045835
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NBLDA: negative binomial linear discriminant analysis for RNA-Seq data.
    Dong K; Zhao H; Tong T; Wan X
    BMC Bioinformatics; 2016 Sep; 17(1):369. PubMed ID: 27623864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Statistical detection of differentially expressed genes based on RNA-seq: from biological to phylogenetic replicates.
    Gu X
    Brief Bioinform; 2016 Mar; 17(2):243-8. PubMed ID: 26108230
    [TBL] [Abstract][Full Text] [Related]  

  • 31. rSeqNP: a non-parametric approach for detecting differential expression and splicing from RNA-Seq data.
    Shi Y; Chinnaiyan AM; Jiang H
    Bioinformatics; 2015 Jul; 31(13):2222-4. PubMed ID: 25717189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of normalization and differential expression analyses using RNA-Seq data from 726 individual Drosophila melanogaster.
    Lin Y; Golovnina K; Chen ZX; Lee HN; Negron YL; Sultana H; Oliver B; Harbison ST
    BMC Genomics; 2016 Jan; 17():28. PubMed ID: 26732976
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A probabilistic approach for automated discovery of perturbed genes using expression data from microarray or RNA-Seq.
    Sundaramurthy G; Eghbalnia HR
    Comput Biol Med; 2015 Dec; 67():29-40. PubMed ID: 26492320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data.
    Baik B; Yoon S; Nam D
    PLoS One; 2020; 15(4):e0232271. PubMed ID: 32353015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Discrete distributional differential expression (D3E)--a tool for gene expression analysis of single-cell RNA-seq data.
    Delmans M; Hemberg M
    BMC Bioinformatics; 2016 Feb; 17():110. PubMed ID: 26927822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of high variability in gene expression from single-cell RNA-seq profiling.
    Chen HI; Jin Y; Huang Y; Chen Y
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential expression analysis for paired RNA-Seq data.
    Chung LM; Ferguson JP; Zheng W; Qian F; Bruno V; Montgomery RR; Zhao H
    BMC Bioinformatics; 2013 Mar; 14():110. PubMed ID: 23530607
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gene dispersion is the key determinant of the read count bias in differential expression analysis of RNA-seq data.
    Yoon S; Nam D
    BMC Genomics; 2017 May; 18(1):408. PubMed ID: 28545404
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A note on an exon-based strategy to identify differentially expressed genes in RNA-seq experiments.
    Laiho A; Elo LL
    PLoS One; 2014; 9(12):e115964. PubMed ID: 25541961
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Joint estimation of isoform expression and isoform-specific read distribution using multisample RNA-Seq data.
    Suo C; Calza S; Salim A; Pawitan Y
    Bioinformatics; 2014 Feb; 30(4):506-13. PubMed ID: 24307704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.