These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
434 related articles for article (PubMed ID: 25560931)
1. Can laccases catalyze bond cleavage in lignin? Munk L; Sitarz AK; Kalyani DC; Mikkelsen JD; Meyer AS Biotechnol Adv; 2015; 33(1):13-24. PubMed ID: 25560931 [TBL] [Abstract][Full Text] [Related]
2. Laccases for biorefinery applications: a critical review on challenges and perspectives. Roth S; Spiess AC Bioprocess Biosyst Eng; 2015 Dec; 38(12):2285-313. PubMed ID: 26437966 [TBL] [Abstract][Full Text] [Related]
3. Structure, functionality and tuning up of laccases for lignocellulose and other industrial applications. Sitarz AK; Mikkelsen JD; Meyer AS Crit Rev Biotechnol; 2016; 36(1):70-86. PubMed ID: 25198436 [TBL] [Abstract][Full Text] [Related]
4. Insights into lignin degradation and its potential industrial applications. Abdel-Hamid AM; Solbiati JO; Cann IK Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151 [TBL] [Abstract][Full Text] [Related]
5. Direct rate assessment of laccase catalysed radical formation in lignin by electron paramagnetic resonance spectroscopy. Munk L; Andersen ML; Meyer AS Enzyme Microb Technol; 2017 Nov; 106():88-96. PubMed ID: 28859815 [TBL] [Abstract][Full Text] [Related]
6. Influence of mediators on laccase catalyzed radical formation in lignin. Munk L; Andersen ML; Meyer AS Enzyme Microb Technol; 2018 Sep; 116():48-56. PubMed ID: 29887016 [TBL] [Abstract][Full Text] [Related]
7. Roles of small laccases from Streptomyces in lignin degradation. Majumdar S; Lukk T; Solbiati JO; Bauer S; Nair SK; Cronan JE; Gerlt JA Biochemistry; 2014 Jun; 53(24):4047-58. PubMed ID: 24870309 [TBL] [Abstract][Full Text] [Related]
8. Increasing the lignin yield of the Alkaline Polyol Pulping process by treating black liquor with laccases of Myceliophthora thermophila. Engel N; Hundt M; Schapals T Bioresour Technol; 2016 Mar; 203():96-102. PubMed ID: 26722808 [TBL] [Abstract][Full Text] [Related]
9. Reactivity of bacterial and fungal laccases with lignin under alkaline conditions. Moya R; Saastamoinen P; Hernández M; Suurnäkki A; Arias E; Mattinen ML Bioresour Technol; 2011 Nov; 102(21):10006-12. PubMed ID: 21908186 [TBL] [Abstract][Full Text] [Related]
10. On the reactions of two fungal laccases differing in their redox potential with lignin model compounds: products and their rate of formation. Lahtinen M; Kruus K; Heinonen P; Sipilä J J Agric Food Chem; 2009 Sep; 57(18):8357-65. PubMed ID: 19702333 [TBL] [Abstract][Full Text] [Related]
11. Changes in chemical structures of wheat straw auto-hydrolysis lignin by 3-hydroxyanthranilic acid as a laccase mediator. Feng N; Guo L; Ren H; Xie Y; Jiang Z; Ek M; Zhai H Int J Biol Macromol; 2019 Feb; 122():210-215. PubMed ID: 30365991 [TBL] [Abstract][Full Text] [Related]
12. New colorimetric screening assays for the directed evolution of fungal laccases to improve the conversion of plant biomass. Pardo I; Chanagá X; Vicente AI; Alcalde M; Camarero S BMC Biotechnol; 2013 Oct; 13():90. PubMed ID: 24159930 [TBL] [Abstract][Full Text] [Related]
13. Purification and Characterization of a Thermostable Laccase from Trametes trogii and Its Ability in Modification of Kraft Lignin. Ai MQ; Wang FF; Huang F J Microbiol Biotechnol; 2015 Aug; 25(8):1361-70. PubMed ID: 25876603 [TBL] [Abstract][Full Text] [Related]
14. The laccase-catalyzed modification of lignin for enzymatic hydrolysis. Moilanen U; Kellock M; Galkin S; Viikari L Enzyme Microb Technol; 2011 Dec; 49(6-7):492-8. PubMed ID: 22142723 [TBL] [Abstract][Full Text] [Related]
15. Rapid characterization of the activities of lignin-modifying enzymes based on nanostructure-initiator mass spectrometry (NIMS). Deng K; Zeng J; Cheng G; Gao J; Sale KL; Simmons BA; Singh AK; Adams PD; Northen TR Biotechnol Biofuels; 2018; 11():266. PubMed ID: 30275906 [TBL] [Abstract][Full Text] [Related]
16. Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation. Awasthi M; Jaiswal N; Singh S; Pandey VP; Dwivedi UN J Biomol Struct Dyn; 2015 Sep; 33(9):1835-49. PubMed ID: 25301391 [TBL] [Abstract][Full Text] [Related]
17. Oxidative polymerization of lignins by laccase in water-acetone mixture. Fiţigău IF; Peter F; Boeriu CG Acta Biochim Pol; 2013; 60(4):817-22. PubMed ID: 24432339 [TBL] [Abstract][Full Text] [Related]
18. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin. Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071 [TBL] [Abstract][Full Text] [Related]
19. Laccase-Catalyzed Surface Modification of Thermo-Mechanical Pulp (TMP) for the Production of Wood Fiber Insulation Boards Using Industrial Process Water. Schubert M; Ruedin P; Civardi C; Richter M; Hach A; Christen H PLoS One; 2015; 10(6):e0128623. PubMed ID: 26046652 [TBL] [Abstract][Full Text] [Related]
20. [FTIR spectra analysis of the reactive activity of lignin when modified by laccase]. Qiu WH; Chen HZ Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jul; 28(7):1501-5. PubMed ID: 18844148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]