These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 25560931)

  • 41. Multicomponent kinetic analysis and theoretical studies on the phenolic intermediates in the oxidation of eugenol and isoeugenol catalyzed by laccase.
    Qi YB; Wang XL; Shi T; Liu S; Xu ZH; Li X; Shi X; Xu P; Zhao YL
    Phys Chem Chem Phys; 2015 Nov; 17(44):29597-607. PubMed ID: 26477512
    [TBL] [Abstract][Full Text] [Related]  

  • 42. First evidence of catalytic mediation by phenolic compounds in the laccase-induced oxidation of lignin models.
    d'Acunzo F; Galli C
    Eur J Biochem; 2003 Sep; 270(17):3634-40. PubMed ID: 12919328
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enzyme-Catalyzed Polymerization of Kraft Lignin from
    García-Fuentevilla L; Domínguez G; Martín-Sampedro R; Hernández M; Arias ME; Santos JI; Ibarra D; Eugenio ME
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771814
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Methyl syringate: an efficient phenolic mediator for bacterial and fungal laccases.
    Rosado T; Bernardo P; Koci K; Coelho AV; Robalo MP; Martins LO
    Bioresour Technol; 2012 Nov; 124():371-8. PubMed ID: 22995168
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient catalytic removal of phenolic pollutants by laccase from Coriolopsis gallica: Binding interaction and polymerization mechanism.
    Wu X; Cai C; Cen Q; Fu G; Lu X; Zheng H; Zhang Q; Cui X; Liu Y
    Int J Biol Macromol; 2024 Nov; 279(Pt 3):135272. PubMed ID: 39226979
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An assessment of the relative contributions of redox and steric issues to laccase specificity towards putative substrates.
    Tadesse MA; D'Annibale A; Galli C; Gentili P; Sergi F
    Org Biomol Chem; 2008 Mar; 6(5):868-78. PubMed ID: 18292878
    [TBL] [Abstract][Full Text] [Related]  

  • 47. NMR Study on Laccase Polymerization of Kraft Lignin Using Different Enzymes Source.
    Ibarra D; García-Fuentevilla L; Domínguez G; Martín-Sampedro R; Hernández M; Arias ME; Santos JI; Eugenio ME
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768678
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes.
    Camarero S; Ibarra D; Martínez MJ; Martínez AT
    Appl Environ Microbiol; 2005 Apr; 71(4):1775-84. PubMed ID: 15812000
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enzymatic Pretreatment with Laccases from
    Freitas EN; Alnoch RC; Contato AG; Nogueira KMV; Crevelin EJ; Moraes LAB; Silva RN; Martínez CA; Polizeli MLTM
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502353
    [TBL] [Abstract][Full Text] [Related]  

  • 50. On the mechanism of the laccase-mediator system in the oxidation of lignin.
    Crestini C; Jurasek L; Argyropoulos DS
    Chemistry; 2003 Nov; 9(21):5371-8. PubMed ID: 14613147
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Conversion of lignin into value-added materials and chemicals via laccase-assisted copolymerization.
    Cannatelli MD; Ragauskas AJ
    Appl Microbiol Biotechnol; 2016 Oct; 100(20):8685-91. PubMed ID: 27645296
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Laccases for removal of recalcitrant and emerging pollutants.
    Majeau JA; Brar SK; Tyagi RD
    Bioresour Technol; 2010 Apr; 101(7):2331-50. PubMed ID: 19948398
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An Engineered Laccase from
    Pham LTM; Deng K; Choudhary H; Northen TR; Singer SW; Adams PD; Simmons BA; Sale KL
    Biomolecules; 2024 Mar; 14(3):. PubMed ID: 38540744
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Laccase-like enzyme activities from chlorophycean green algae with potential for bioconversion of phenolic pollutants.
    Otto B; Beuchel C; Liers C; Reisser W; Harms H; Schlosser D
    FEMS Microbiol Lett; 2015 Jun; 362(11):. PubMed ID: 25926529
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Laccase activity measurement by FTIR spectral fingerprinting.
    Perna V; Baum A; Ernst HA; Agger JW; Meyer AS
    Enzyme Microb Technol; 2019 Mar; 122():64-73. PubMed ID: 30638509
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of a laccase from Ganoderma lucidum CBS 229.93 having potential for enhancing cellulase catalyzed lignocellulose degradation.
    Sitarz AK; Mikkelsen JD; Højrup P; Meyer AS
    Enzyme Microb Technol; 2013 Dec; 53(6-7):378-85. PubMed ID: 24315640
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Laccases: structure, reactions, distribution.
    Claus H
    Micron; 2004; 35(1-2):93-6. PubMed ID: 15036303
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enzymatic depolymerization of industrial lignins by laccase-mediator systems in 1,4-dioxane/water.
    Dillies J; Vivien C; Chevalier M; Rulence A; Châtaigné G; Flahaut C; Senez V; Froidevaux R
    Biotechnol Appl Biochem; 2020 Sep; 67(5):774-782. PubMed ID: 31957059
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Potential biological role of laccase from the sponge Suberites domuncula as an antibacterial defense component.
    Li Q; Wang X; Korzhev M; Schröder HC; Link T; Tahir MN; Diehl-Seifert B; Müller WE
    Biochim Biophys Acta; 2015 Jan; 1850(1):118-28. PubMed ID: 25459515
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A thermostable laccase from Thermus sp. 2.9 and its potential for delignification of Eucalyptus biomass.
    Navas LE; Martínez FD; Taverna ME; Fetherolf MM; Eltis LD; Nicolau V; Estenoz D; Campos E; Benintende GB; Berretta MF
    AMB Express; 2019 Feb; 9(1):24. PubMed ID: 30756202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.